

INVERTER SIEMENS S120 PM 240-2 per CENTRALINE HI

Sommario 1 AVVERTENZE E CAUTELE......2-1 2 2.1 2.2 3.1 POWER MODULE BLOCKSIZE (PM240-2)3-1 3.1.1 3.1.2 3.1.3 3.1.4 Disegni quotati 3-6 Cablaggio......3-8 3.1.5 3.1.6 COMPATIBILITÀ ELETTROMAGNETICA (EMC)......4-1 4 5 5.1 5.2 AVVERTENZE DI SICUREZZA.......5-1 5.3 5.4 5.5 DESCRIZIONE6-1 6.1 AVVERTENZA DI SICUREZZA......6-2 6.2 6.3 6.4 6.5 DATI TECNICI 6-4 6.6 6.7 7 7.1 COLLEGAMENTO CIRCUITO DI POTENZA.......7-1 7.2 7.3 7.4 7.5 7.6

PROGRAMMAZIONE TRAMITE COMPUTER WEBSERVER 8-1

COLLEGAMENTO WEBSERVER......8-1

PERSONALIZZAZIONE DEI PARAMETRI8-5

8.1

8.2 8.3

	8.3.1	Modifica del valore di un parametro	
	8.3.2	Salvataggio delle modifiche	
	8.3.3	Aggiunta di una nuova lista di parametri	
9	SOFTW	ARE STARTER DOWNLOAD (OPTIONAL)	9-1
10	PRO	GRAMMAZIONE TRAMITE TASTIERA E MENÙ	10-1
•	10.1 BA	SIC OPERATOR PANEL BOP20	10-1
	10.1.1	Descrizione	
	10.1.2	Descrizione delle interfacce	
	10.1.3	Visualizzazione e comando con il BOP	
	10.1.4	Esempio: modifica di un parametro	
	10.1.5	Visualizzazione dei guasti e degli allarmi	10-5
	10.1.6	Montaggio	
11	PARA	METRI	11-1
	11.1 VIS	SUALIZZAZIONE LISTA PARAMETRI	11-1
•	11.2 ME	SSA IN SERVIZIO DELL'INVERTER	11-1
•	11.3 LIS	TA PARAMETRI	11-2
	11.4 CC	NFIGURAZIONE PARAMETRI	11-3
	11.4.1	Salita	11-3
	11.4.2	Discesa	11-6
	11.4.3	Rilivellamento	11-7
	11.4.4	Emergenza	11-7
	11.4.5	Considerazioni generali	11-7
•	11.5 TE	ST VALVOLA PARACADUTE	11-7
12	CODI	CI DI ANOMALIA E DI AVVISO	12-1
	12.1 RE	SET ANOMALIE	12-1
	12.2 EL	ENCO CODICI ANOMALIE	12-1
13	CON	FROLLI E MANUTENZIONE	13-1
	13.1 TE	ST MEGGER	13-1

1 INTRODUZIONE

SIEMENS PM240-2 è uno speciale inverter con un software specializzato in impianti idraulici, che controlla la fase di marcia salita e, se la centralina è predisposta, anche per la marcia discesa. Questo inverter ha la possibilità di essere applicato sia a centraline di vecchia generazione, sia con centraline più recenti e moderne. I vantaggi sono:

- Riduzione delle correnti di spunto. La corrente massima di avviamento si avvicina alla corrente nominale.
- Rifasamento della corrente assorbita dalla rete. Cosφ ≥0.98.
- · Riduzione dei consumi.
- Ottimizzazione del comfort di marcia.
- Possibilità di scelta del valore della velocità di ispezione.
- Possibilità di imporre un limite massimo della potenza assorbita dalla rete, per contenere la potenza contrattuale.

Per ulteriori approfondimenti riguardo le funzioni dell'inverter Siemens PM240-2, fare riferimento ai relativi manuali Siemens, disponibili sul sito della stessa azienda

Tutte le informazioni, i manuali di prodotto e i dettagli, possono essere reperiti all'indirizzo internet: http://support.automation.siemens.com inserendo il codice prodotto di 16 cifre (6SL3210...) riportato sul prodotto o nel presente manuale nella sezione dati tecnici

.

2 AVVERTENZE E CAUTELE

Seguire le procedure passo dopo passo come indicato nel manuale prima di alimentare l'apparecchiatura.

2.1 AVVERTENZE

Seguire attentamente le procedure riportate di seguito per non rischiare gravi infortuni.

- 1- La corrente di fuga dell'inverter verso terra è superiore a 30mA, è necessario quindi prevedere un interruttore differenziale avente Id non inferiore a 300mA, di tipo B oppure A. La normativa prescrive, per il collegamento di terra, un cavo di sezione minima 10 mm².
 - Se, chiudendo l'interruttore generale, si ha l'intervento del differenziale, non ripetere la manovra diverse volte di seguito perché l'inverter potrebbe subire un danno permanente.
- 2- L'inverter, con impostazioni dei parametri errate, può causare la rotazione del motore ad una velocità maggiore della velocità di sincronismo. Non fare funzionare il motore oltre i propri limiti meccanici ed elettrici. È responsabilità dell'installatore assicurarsi che i movimenti avvengano in condizioni di sicurezza, senza superare i limiti di funzionamento previsti.
- 3- Rischio di folgorazione. Alimentare l'inverter soltanto con il coperchio frontale inserito. Non toglierlo **MAI** durante il funzionamento. Prima di intervenire sull'apparecchiatura, togliere l'alimentazione in ingresso ed aspettare qualche minuto per permettere ai condensatori interni di scaricarsi.
- 4- L'eventuale resistenza esterna di frenatura, durante il funzionamento, si riscalda. Non fissarla vicino a materiali infiammabili o a contatto con essi. Per migliorare la dissipazione del calore si consiglia di fissarla ad una piastra metallica. Evitare che possa essere toccata, proteggerla adeguatamente.
- 5- L'inverter deve sempre essere collegato alla rete. In caso di interruzione attendere sempre almeno 1 minuto prima di ripristinare l'alimentazione. INSERZIONI TROPPO RAVVICINATE CAUSANO LA ROTTURA DELL'INVERTER.
- 6- Evitare di usare strumenti come oscilloscopio o altri per testare i circuiti interni dell'inverter. Questo tipo di operazione potrà essere effettuata solamente da personale specializzato.

2.2 CAUTELE

Seguire attentamente le procedure riportate di seguito per non rischiare danneggiamenti dell'inverter.

- 1- Non fornire all'apparecchiatura una tensione superiore a quella consentita. Una tensione eccessiva può causare danni irreparabili ai componenti interni.
- 2- Per evitare danneggiamenti all'inverter in caso di fermo prolungato senza alimentazione, prima di metterlo in funzione, è necessario:
 - -Se l'inverter è fermo da diversi mesi, alimentarlo per almeno 1 ora in modo da rigenerare i condensatori del bus.
 - -Se l'inverter è fermo da più di 1 anno, alimentarlo per 1 ora con una tensione inferiore del 50% a quella nominale, in seguito per 1 ora alla tensione nominale.
- 3- Non collegare condensatori sulle uscite dell'inverter.
- 4- Prima di resettare un guasto dell'inverter analizzare bene le cause dell'intervento.
- 5- Utilizzare inverter con corrente nominale uguale o superiore alla corrente nominale del motore.

3 POWER MODULE

3.1 POWER MODULE BLOCKSIZE (PM240-2)

3.1.1 Descrizione

I Power Module della forma costruttiva Blocksize sono i moduli di potenza dell'inverter e possono avere grandezza costruttiva crescente identificata a partire da FSA fino a raggiungere FSF. Sono composti dai seguenti componenti:

- Raddrizzatore a diodi sul lato rete
- Condensatori a elettrolita del circuito intermedio con dispositivo di precarica
- Invertitore di uscita
- Chopper di frenatura per resistenza di frenatura (esterna)
- Alimentazione DC 24 V / 1 A
- Unità di comando, rilevamenti del valore attuale
- Ventilatore per il raffreddamento dei semiconduttori di potenza

I Power module sono forniti nella versione con filtro di rete integrato, con riferimento alla normativa EMC EN 61800-3

Tabella 1 Panoramica Power Module PM240-2

Power Module grandezza costruttiva FSB, con filtro di rete integrato

Power Module grandezza costruttiva FSC, con filtro di rete integrato

Power Module grandezza costruttiva FSD, con filtro di rete integrato

Power Module grandezza costruttiva FSE, con filtro di rete integrato

Power Module grandezza costruttiva FSF, con filtro di rete integrato

3.1.2 Avvertenze di sicurezza

AVVERTENZA

Pericolo di incendio in caso di surriscaldamento in caso di spazi liberi di ventilazione e distanze di montaggio insufficienti

Se gli spazi liberi di ventilazione e le distanze di montaggio sono insufficienti, si verifica un surriscaldamento con conseguente pericolo per le persone.

- Montare sempre i Power Module in verticale.
- Per il montaggio rispettare le seguenti distanze tra i componenti (*):
 - Grandezza Costruttiva FSA: 30 mm (1.18 pollici)
 - Grandezza Costruttiva FSB: 40 mm (1.57 pollici)
 - Grandezza Costruttiva FSC: 50 mm (1.96 pollici)
- Rispettare le seguenti distanze di ventilazione sopra e sotto i componenti:
 - Grandezza Costruttiva FSB: 100 mm (3.93 pollici)
 - Grandezza Costruttiva FSC: 125 mm (4.92 pollici)
 - Grandezza Costruttiva FSD e FSE: 300 mm (11.81 pollici)
 - Grandezza Costruttiva FSF: 350 mm (13.77 pollici)
- Rispettare le seguenti distanze di ventilazione davanti ai componenti:
 - Grandezza Costruttiva FSB ... FSF: 30 mm (1.18 pollici)
- Accertarsi che il flusso dell'aria di raffreddamento possa attraversare i Power Module senza impedimenti
- (*) I Power Module possono essere montati affiancati senza componenti sovrapposti fino a una temperatura ambiente di 40°C.

Nelle combinazioni con componenti sovrapposti e a temperature ambiente comprese tra 40°C e 55°C si devono rispettare le distanze laterali minime indicate. Per le combinazioni con grandezze costruttive differenti vale la distanza maggiore delle due.

3.1.3 Descrizione interfacce

Panoramica

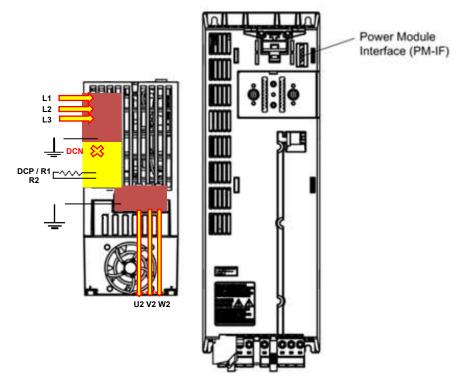


Figura 1 PM240-2, grandezza costruttiva FSB

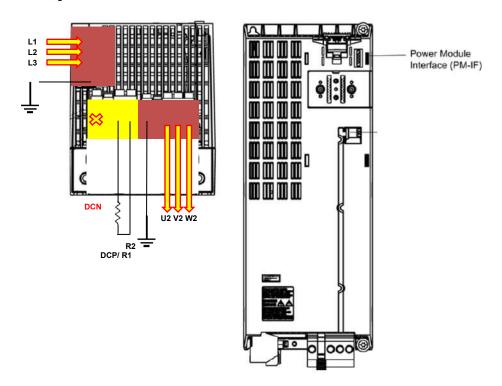


Figura 2 PM240-2, grandezza costruttiva FSC

DC link DC link - F3 DCP R2 DCB Resistenza di frenatura / Braking resistor R1 Piastra schermo optional / Shield plate, optional FSD, FSE **(** L3 • U2 L1 V2 **(1)** W2

Figura 3, PM240-2 grandezza costruttiva FSD e FSE

Figura 4 PM 240-2 grandezza costruttiva FSF

Per ulteriori dettagli su:

- Disposizione dei morsetti di rete e dei morsetti del motore
- Dati tecnici
- Modalità di fissaggio

fare riferimento al manuale SIEMENS G120-PM240-2

Disegni quotati

AVVERTENZE: le quote riportate vanno sommate insieme agli ingombri del Control Unit

Grandezza costruttiva FSC

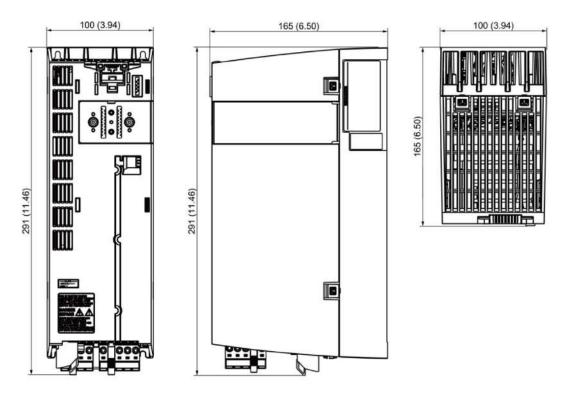


Figura 5 Disegno quotato Power Module PM 240-2, grandezze costruttive FSB tutti i valori in mm e (pollici)

Grandezza costruttiva FSC

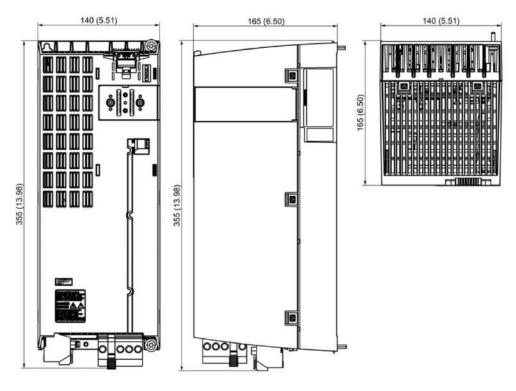


Figura 6 Disegno quotato Power Module PM 240-2, grandezze costruttive FSC tutti i valori in mm e (pollici)

Grandezza costruttiva FSD

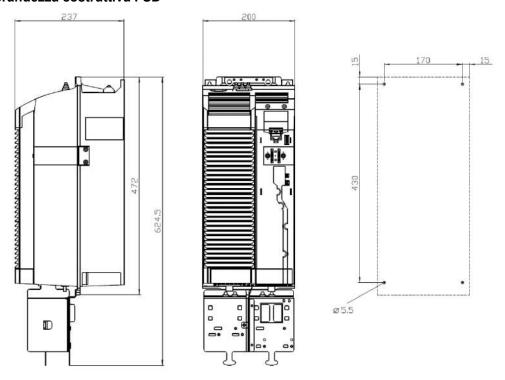


Figura 7 Disegno quotato Power Module PM240-2, grandezze costruttive FSD tutti i valori in nm e (pollici)

Grandezza costruttiva FSE (con filtro di rete integrato)

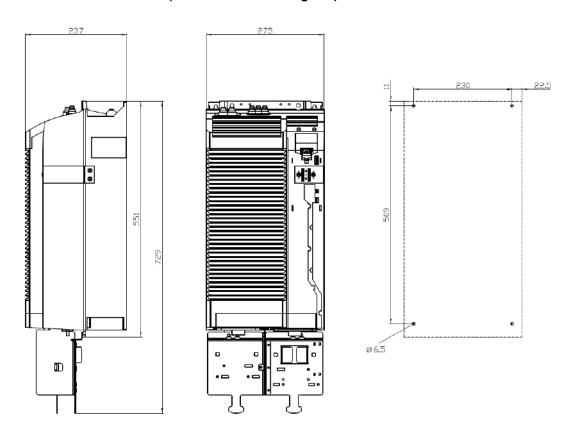


Figura 8 Disegno quotato Power Module PM240-2, grandezza costruttive FSE (con filtro di rete integrato); tutti i valori in mm e (pollici)

Grandezza costruttiva FSF (con filtro di rete integrato)

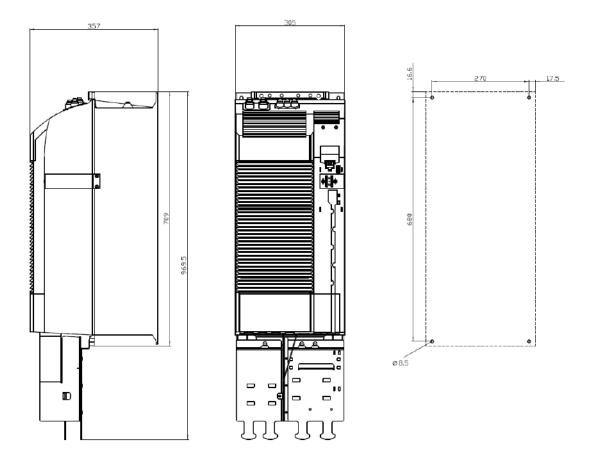


Figura 9 Disegno quotato Power Module PM240-2, grandezza costruttive FSF (con filtro di rete integrato); tutti i valori in mm e (pollici)

3.1.5 Cablaggio

Accesso ai morsetti di rete e ai morsetti del motore

Per accedere ai morsetti di rete e del motore, qualora sia previsto un carter di copertura, rimuovere la protezione utilizzando un attrezzo opportuno. Successivamente la calotta dovrà essere rimontata.

PERICOLO

Pericolo di morte per folgorazione con morsetti scoperti

Il contatto con parti sotto tensione può provocare la morte o gravi lesioni fisiche:

 Far funzionare il Power Module solo con il coperchio dei morsetti chiuso

3.1.6 Dati tecnici

Tabella 2 Dati tecnici PM240-2, FSB (3 AC 380 ... 480 V ±10 %)

PM240-2 con filtro di rete integrato codice →	6SL3210	1PE21-1AL0	1PE21-4AL0	1PE21-8AL0
Corrente di uscita				
Corrente nominale In	Α	10.20	13.20	18.0
Corrente di carico di base IH	Α	7.70	10.20	13.2
Corrente di picco Imax (3s su 300s)	Α	15.4	20.4	26.4
Corrente di picco Imax (57+3s su 300s)	Α	11.55	15.3	19.8
Potenza tipica¹)				
Su base In	kW	4	5.5	7.5
Su base IH	kW	3	4	5.5
Frequenza nominale impulsi	kHz	4	4	4
Potenza dissipata	kW	0.11	0.15	0.2
Aria di raffreddamento necessaria	m³/s	0.009	0.009	0.009
Livello di pressione acustica LpA (1m)	dB	72	72	72
Alimentazione DC 24V				
per Control Unit	Α	1.0	1.0	1.0
Corrente di Ingresso nominale²)				
con bobina di rete	Α	11.60	15.30	22.2
Fusibili UL Classe J				
Corrente nominale	Α	35	35	35
Fusibili NH IEC 60947		3NA3812	3NA3812	3NA3812
Corrente nominale	Α	32	32	32
Tipo di interruttore automatico IEC 60947		3RV2021-	3RV2021-	3RV1031-
Corrente nominale		4BA10	4BA10	4EA10
	Α	14 20	14 20	22 32
	_			
Valore di resistenza	Ω	370	140	75
Resistenza di frenatura est.				
Lunghezza max. del cavo	М	15		
Della resistenza di frenatura				
Collegamento alla rete		Morsetti a vite in		
L1, L2, L3		1.5 6.00 mm² ((16 10 AWG)	
Coppia serraggio		0.6Nm 5.5lib.in		
Collegamento del motore				
U2, V2, W2				
Coppia serraggio		NA		
Collegamento circuito intermedio,		Morsetti a vite in		
collegamento per resistenza di frenatura DCP/R1, DCN, R2		1.5 6.00 mm² (16 10 AWG) 0.6Nm 5.5lib.in		
Lunghezza Max del cavo del motore ³)		U.UINIII J.JIID.III		
schermato / non schermato	m	50/100		
Grado di protezione	111	IP20		
-	le m	_		2.00
1) Potonza nominalo di un tipico motoro aciner	kg	3.10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3.20

¹⁾ Potenza nominale di un tipico motore asincrono standard con 3AC 400 V

 $^{^2}$) La corrente di ingresso dipende dal carico del motore e dall'impedenza della rete. Le correnti di ingresso valgono per carico con potenza tipica (su base I_n) con un'impedenza di rete corrispondente a $U_k = 1\%$

³) Lunghezza max. del cavo motore 50m (schermato) con Power Module PM240-2 dotati di filtro di rete integrato per rispettare i valori limite stabiliti dalla norma EN 61800-3 categoria C2.

Tabella 3 Dati tecnici PM240-2, FSC (3 AC 380 ... 480 V ±10 %)

PM240-2 con filtro di rete integrato codice →	6SL3210-	1PE22-7AL0	1PE23-3AL0
Corrente di uscita			
Corrente nominale In	Α	26	32
Corrente di carico di base IH	Α	18	26
Corrente di picco Imax (3s su 300s)	Α	36	52
Corrente di picco Imax (57+3s su 300s)	Α	27	39
Potenza tipica¹)			
Su base In	kW	11	15
Su base IH	kW	7.5	11
Frequenza nominale impulsi	kHz	4	4
Potenza dissipata	kW	0.30	0.37
Aria di raffreddamento necessaria	m³/s	0.018	0.018
Livello di pressione acustica LpA (1m)	dB	72	72
Alimentazione DC 24V			
per Control Unit	Α	1.0	1.0
Corrente di Ingresso nominale²)			
con bobina di rete	Α	32.60	39.90
Fusibili UL Classe J			
Corrente nominale	Α	50	50
Fusibili NH IEC 60947		3NA3820	3NA3820
Corrente nominale	Α	50	50
Tipo di interruttore automatico IEC 60947		3RV1031-4FA10	3RV1031-4HA10
Corrente nominale	Α	28 40	40 50
Valore di resistenza			
Resistenza di frenatura est.	Ω	30	
Lunghezza max. del cavo			
Della resistenza di frenatura	m	15	
Collegamento alla rete		Morsetti a vite innes	tabili
L1, L2, L3		6.0016.00 mm ² (1	0 6 AWG)
Coppia serraggio		1.3 Nm 12lbf. in	
Collegamento del motore			
U2, V2, W2			
Coppia serraggio			
Collegamento circuito intermedio, collegamento		6,0016,00 mm ²	
per resistenza di frenatura		(AWG10AWG6)	
DCP/R1, DCN, R2			
Lunghezza Max del cavo del motore ³)			
schermato / non schermato	m	50/100	
Grado di protezione		IP20	
Peso	kg	5.30	5.40
		1	

¹) Potenza nominale di un tipico motore asincrono standard con 3AC 400 V
 ²) La corrente di ingresso dipende dal carico del motore e dall'impedenza della rete. Le correnti di ingresso valgono per carico con potenza tipica (su base I_n) con un'impedenza di rete corrispondente a U_k = 1% ³) Lunghezza max. del cavo motore 50m (schermato) con Power Module PM240-2 dotati di filtro di rete

integrato per rispettare i valori limite stabiliti dalla norma EN 61800-3 categoria C2.

Tabella 4 Dati tecnici PM240-2, FSD (3 AC 380 V ... 480 V ±10 %)

PMO40 0 and filtre all materials water	1	1	40504.541.0	40500 041 0	4DE07.541.0	
PM240-2 con filtro di rete integrato codice →	6SL3210-	1PE23-8AL0	1PE24-5AL0	1PE26-0AL0	1PE27-5AL0	
Corrente di uscita						
Corrente nominale In	Α	38	45	60	75	
Corrente di carico di base IH	Α	32	38	45	60	
Corrente di picco Imax (3s su 300s)	Α	64	76	90	120	
Corrente di picco Imax (57+3s su 300s)	Α	48	57	67.5	90	
Potenza tipica¹)						
Su base In	kW	18	22	30	37	
Su base IH	kW	15	18.50	22	30	
Frequenza nominale impulsi	kHz	4	4	4	4	
Potenza dissipata	kW	0.55	0.68	0.77	0.69	
Aria di raffreddamento necessaria	m³/s	0.038	0.022	0.022	1.02	
Livello di pressione acustica LpA (1m)	dB	72	72	72	72	
Alimentazione DC 24V						
per Control Unit	Α	1.0	1.0	1.0	1.0	
Corrente di Ingresso nominale²)						
con bobina di rete	Α	36	42	57	70	
Fusibili UL Classe J						
Corrente nominale	Α	50	70	90	100	
Fusibili NH IEC 60947		3NA3820	3NA3824	3NA3830	3NA3830	
Corrente nominale	Α	50	80	80	100	
Tipo di interruttore automatico IEC		3RV1042-	3RV1042-	3RV1042-	3VL1712-	
60947		1JA10	4KA10	4KA10	1DD33-0AA0	
Corrente nominale	Α	45 63	57 75	57 75	100125	
Valore di resistenza						
Resistenza di frenatura est.	Ω	25 15				
Lunghezza max. del cavo						
della resistenza di frenatura	m	15				
Collegamento alla rete		Morsetto a vite				
L1, L2, L3		10.00 35.00	mm ² (20 10 A	WG)		
Coppia serraggio		2.5 4.5 Nm	22 lbf.in			
Collegamento del motore		Morsetto a vite				
U2, V2, W2			mm ² (20 10 A	WG)		
		2.5 4.5 Nm	22 lbf.in	<u> </u>		
Collegamento circuito intermedio,						
collegamento per resistenza di						
frenatura		2,5016,0mm ²				
DCP/R1, DCN, R2		(AWG20 AWG6)				
Lunghezza Max del cavo del motore³)						
schermato/non schermato	m	200/300				
Grado di protezione		IP20			1	
Peso						
con filtro di rete integrato	kg	17.50	17.50	18.50	18.50	

¹⁾ Potenza nominale di un tipico motore asincrono standard con 3AC 400 V
2) La corrente di ingresso dipende dal carico del motore e dall'impedenza della rete. Le correnti di ingresso valgono per carico con potenza tipica (su base In) con un'impedenza di rete corrispondente a Uk = 1%

³⁾ Lunghezza max. del cavo motore 200m (schermato) con Power Module PM240-2 dotati di filtro di rete integrato per rispettare i valori limite stabiliti dalla norma EN 61800-3 categoria C2.

Tabella 5 Dati tecnici PM240-2, FSE (3 AC 380 V ... 480 V ±10 %)

PM240-2 con filtro di rete integrato codice →	6SL3210	1PE28-8AL0	1PE31-1AL0	
Corrente di uscita				
Corrente nominale In	Α	90	110	
Corrente di carico di base IH	Α	75	90	
Corrente di picco Imax (3s su 300s)	Α	150	180	
Corrente di picco Imax (57+3s su 300s)	Α	113	135	
Potenza tipica¹)				
Su base In	kW	45	55	
Su base IH	kW	37	45	
Frequenza nominale impulsi	kHz	4	4	
Potenza dissipata	kW	1.20	1.55	
Aria di raffreddamento necessaria	m³/s	0.083	0.083	
Livello di pressione acustica LpA (1m)	dB	71	71	
Alimentazione DC 24V	Α	1.0	1.0	
per Control Unit				
Corrente di Ingresso nominale²)				
con bobina di rete	Α	86	104	
Fusibili UL Classe J				
Corrente nominale	Α	125	150	
Fusibili NH				
IEC 60947		3NA3832	3NA3836	
Corrente nominale	Α	125	160	
Tipo di interruttore automatico IEC 60947		3VL1716-1DD33-	3VL3720-1DC36-	
Corrente nominale	Α	0AA0	0AA0	
		125 160	160 200	
Valore di resistenza		40		
della resistenza di frenatura estrema	Ω	10		
Lunghezza max. del cavo		45		
Della resistenza di frenatura	m	15		
Collegamento alla rete		Morsetto a vite	2414(C)	
L1, L2, L3		2570mm ² (63/0		
Coppia serraggio Collegamento del motore		810Nm 88.5lbf.in Morsetto a vite		
U2, V2, W2		2570mm ² (63/0	MMC)	
Coppia serraggio		810Nm 88.5lbf.in		
Collegamento circuito intermedio, collegamento per resistenza		U IUIVIII OO.JIII.III		
di frenatura		10,0035,00mm ²		
DCP/R1, DCN, R2		(AWG8 AWG2)		
Lunghezza Max. del cavo del motore ³)		(= = = = = = = = = = = = = = = = = = =		
Schermato/non schermato	m	200/300		
Grado di protezione		IP20		
Peso con filtro di rete integrato	kg	28		
1 000 con mac a rote integrate	'\9			

¹⁾ Potenza nominale di un tipico motore asincrono standard con 3AC 400 V

 $^{^2}$) La corrente di ingresso dipende dal carico del motore e dall'impedenza della rete. Le correnti di ingresso valgono per carico con potenza tipica (su base I_n) con un'impedenza di rete corrispondente a U_k = 1% 3) Lunghezza max. del cavo motore 200m (schermato) con Power Module PM240-2 dotati di filtro di rete

Lunghezza max. del cavo motore 200m (schermato) con Power Module PM240-2 dotati di filtro di rete integrato per rispettare i valori limite stabiliti dalla norma EN 61800-3 categoria C2.

Tabella 6 Dati tecnici PM240-2 FSF (3 AC 380 V ... 480 V ±10 %)

PM240 2 con filtro di roto integrato				4DE 22 4ALC	4DE22 5ALC
PM240-2 con filtro di rete integrato codice →	6SL3210	1PE31-5AL0	1PE 31-8AL0	1PE 32-1AL0	1PE32-5AL0
Corrente di uscita					
Corrente di discita Corrente nominale In	Α	145	178	205	250
Corrente di carico di base IH	A	110	145	178	205
Corrente di canco di base il i Corrente di picco Imax (3s su 300s)	A	220	308	365	410
Corrente di picco Imax (35 su 300s) Corrente di picco Imax (57+3s su 300s)		165	231	267	308
Potenza tipica¹)	Α	100	231	201	300
Su base In	kW	75	90	110	132
	1				
Su base IH	kW	55	75	90	110
Frequenza nominale impulsi	kHz	4	4	2	2
Potenza dissipata	kW	1.79	2.33	2.17	2.48
Aria di raffreddamento necessaria	m³/s	0.153	0.153	0.153	0.153
Livello di pressione acustica LpA	dB	68	68	68	68
(1m)		1.0	1.0	1.0	1.0
Alimentazione DC 24V	Α	1.0	1.0	1.0	1.0
per Control Unit					
Corrente di Ingresso nominale²)					
con bobina di rete	Α	140	172	198	242
Fusibili UL Classe J					
Corrente nominale	Α	200	250	300	350
Fusibili NH					
IEC 60947		3NA3140	3NA3142	3NA3250	3NA3252
Corrente nominale	Α	200	224	300	315
Tipo di interruttore automatico IEC		3VL3720-	3VL3725-	3VL3720-	3VL4731-
60947		1DC36-0AA0	1DC36-0AA0	1DC36-0AA0	1DC36-0AA0
Corrente nominale	Α	160 200	200 250	200 250	250 315
Valore di resistenza					
della resistenza di frenatura estrema	Ω	7.1		5	
Lunghezza max. del cavo	m	15			
Della resistenza di frenatura					
Collegamento alla rete			171322 per bullon		
L1, L2, L3				3 2 × 4/0 AWG))
Coppia serraggio		2225Nm 10			
Collegamento del motore			171322 per bullon		
U2, V2, W2				G 2 × 4/0 AWG	i)
Coppia serraggio		2225Nm 10l	bf.in		
Collegamento circuito intermedio,					
collegamento per resistenza di					
frenatura		25,0070,00mm ²			
DCP/R1, DCN, R2		(63/0 AWG)			
Lunghezza Max. del cavo del motore					
³)schermato / non schermato	m	300/450			
Grado di protezione		IP20			
Peso con filtro di rete integrato	kg	63		65	
. 222 John mare di rote integrate	i ''8				

¹⁾ Potenza nominale di un tipico motore asincrono standard con 3AC 400 V
2) La corrente di ingresso dipende dal carico del motore e dall'impedenza della rete. Le correnti di ingresso valgono per carico con potenza tipica (su base I_n) con un'impedenza di rete corrispondente a U_k = 1%

³⁾ Lunghezza max. del cavo motore 300m (schermato) con Power Module PM240-2 dotati di filtro di rete integrato per rispettare i valori limite stabiliti dalla norma EN 61800-3 categoria C2.

4 COMPATIBILITÀ ELETTROMAGNETICA (EMC)

Congiuntamente a una configurazione d'impianto conforme alle contromisure EMC, i filtri di rete limitano i disturbi condotti dai cavi dei Power Module ai limiti fissati dalla normativa EN61800-3, che definisce gli ambienti di installazione e la categoria dei sistemi di azionamento da C1 (migliore) a C4(peggiore).

Tutti i POWER MODULE (PM) sono forniti con filtro di rete e risultano conformi alla categoria C2 (ambienti industriali) secondo quanto previsto dalla normativa EN 61800-3.

I PM con adeguato filtro di rete sono conformi alla categoria C2 e possono pertanto essere installati in ambienti civili, solo se:

- 1. l'installazione e la messa in servizio vengano effettuate da uno specialista (come definito dalla normativa), nel rispetto dei valori limite per la compatibilità elettromagnetica,
- 2. vengano rispettati i seguenti requisiti aggiuntivi:
- Utilizzo di un cavo schermato a capacità ridotta
- Cavo motore più corto di 15 m nei PM Blocksize
- Frequenza impulsi ≤ 4kHz nei PM Blocksize
- Corrente ≤ corrente ingresso nominale riportata nei dati tecnici

Per maggiori informazioni riguardo alle regole per il cablaggio dell'inverter, fare riferimento al paragrafo 7.3

5 RESISTENZE DI FRENATURA

5.1 DESCRIZIONE RESISTENZE FRENATURA

I Power Module PM240-2 non sono in grado di recuperare verso la rete l'energia sviluppatasi nella frenatura. Per il funzionamento generatorio, come può essere la frenatura di una massa volanica, si deve collegare una resistenza di frenatura che trasformi l'energia prodotta in calore.

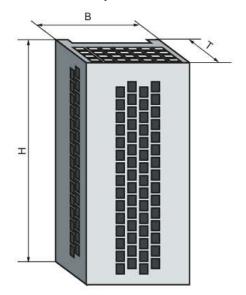
Montare la resistenza su una superficie resistente al calore con un'alta conduttività termica. Un interruttore termico verifica che la resistenza di frenatura non si surriscaldi e, in caso di superamento dei valori limite, emette un messaggio che segnala la presenza di un contatto con separazione di potenziale.

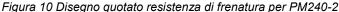
5.2 AVVERTENZE DI SICUREZZA

AVVERTENZA

Pericolo di incendio e danni agli apparecchi a causa di dispersione verso terra/cortocircuito I cavi di collegamento della resistenza di frenatura devono essere posati con le adequate protezioni contro

- I cavi di collegamento della resistenza di frenatura devono essere posati con le adeguate protezioni contro il cortocircuito e la dispersione verso terra. Una dispersione verso terra può provocare un incendio.
 - Rispettare le prescrizioni locali in materia di installazione per escludere questo errore.
 Proteggere i cavi da eventuali danni meccanici.
 - Inoltre adottare una delle misure seguenti:
 - Utilizzare cavi con doppio isolamento.
 - Rispettare le distanze di sicurezza adequate, ad es. mediante l'impiego di distanziatori.
 - Posare i cavi in canaline o tubi separati.


CAUTEL A


Pericolo di ustioni o danni a causa di temperature superficiali elevate della resistenza di frenatura La resistenza di frenatura può surriscaldarsi molto. Il contatto con la superficie può provocare gravi ustioni. I componenti vicini possono essere danneggiati.

- Montare la resistenza di frenatura in modo da escludere qualsiasi contatto. Se questo non fosse possibile, applicare nei punti pericolosi un'adeguata targhetta di avviso visibile e comprensibile.
- Al fine di evitare danni termici ai componenti vicini, rispettare la seguente condizione per i Power Module PM240-2:
 - Spazi liberi di ventilazione di 250 mm intorno alla resistenza di frenatura

5.3 DISEGNI QUOTATI

Resistenza di frenatura per Power Module PM240-2

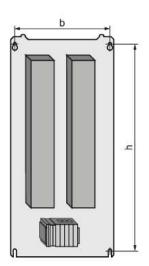


Tabella 7 Grandezze costruttive in mm

Numero articolo Dimensione frame		ingo			Dimensioni di foratura [mm]		Viti fissaggio / Coppia di serraggio	Peso [kg]
		В	Н	Т	b	h		
6SL3201-0BE21-8AA0	FSB	175	345	100	142	316	M4 / 3 Nm	2.7
6SL3201-0BE23-8AA0	FSC	250	490	140	217	460	M5 / 6 Nm	6.2
JJY:023422620001	FSD	220	470	180	187	430	M5 / 6 Nm	7
JJY:023424020001	FSD	220	610	180	187	570	M5 / 6 Nm	9.5
JJY:023434020001	FSE	350	630	180	317	570	M5 / 6 Nm	13.5
JJY:023454020001*)	FSF							
*JJY:023422620001	(FSD)	220	470	180	187	430	M5 / 6 Nm	7
*JJY:023434020001	(FSE)	350	630	180	317	570		13.5
JJY:023464020001*)	FSF							
* JJY:023434020001	(FSE)	350	630	180	317	570	M5 / 6 Nm	13.5
* JJY:023434020001	(FSE)	350	630	180	317	570		13.5

Quando si fissa la resistenza di frenatura usare viti, dadi e rondelle

5.4 MONTAGGIO

Alcune resistenze di frenatura dispongono di un cavo di collegamento integrato per i collegamenti di potenza (R1 / R2) sull'inverter. Quindi, la lunghezza e la sezione trasversale del cavo di connessione è dato. Per le resistenze di frenatura senza il cavo di collegamento integrato, la lunghezza massima è di 10m.

A causa del calore sviluppato, le resistenze di frenatura devono essere montate lateralmente accanto ai Power Module.

Le resistenze di frenatura per i Power Module PM240-2 delle grandezze costruttive da FSC a FSF andrebbero collocate all'esterno del quadro elettrico o all'esterno del locale in cui è situato il quadro di distribuzione per tenere lontano il calore dissipato dalla zona dei Power Module. In questo modo si riducono gli oneri per la climatizzazione del quadro elettrico.

Le resistenze di frenatura possono essere montate in orizzontale o in verticale. In caso di montaggio verticale i collegamenti dei cavi devono essere in basso.

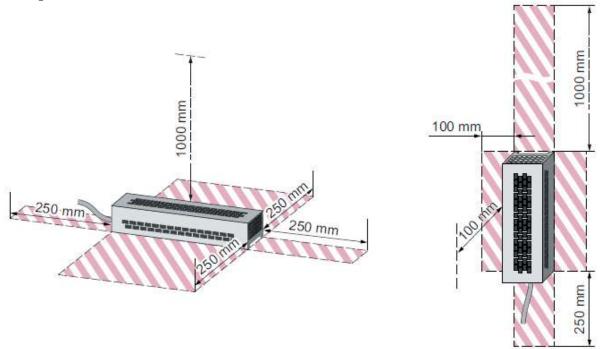


Figura 11 - Spazio di montaggio per le resistenze di frenatura su superficie orizzontale o parete

^{*)} Questo tipo di resistenza di frenatura comprende due resistenze che devono essere collegate tra loro **in parallelo** sul lato impianto del sistema.

5.5 DATI TECNICI

Tabella 8 Dati tecnici resistenze di frenatura per Power Module PM240-2, 400V

N. ordinazione	6SL3201-	0BE21-8AA0	0BE23-8AA0
Adatto per Power Module grandezza costruttiva		FSB	FSC
Resistenza	Ω	75	30
Potenza tipica PDB	W	375	925
Potenza di picco Pmax	kW	7.5	18.5
Durata del carico per la potenza di picco Ta	s	→Figura 12	
Periodo del ciclo di carico del freno T	s	→Figura 12	
Grado di protezione		IP20	IP20
Collegamento di potenza (incluso PE)		4 mm ² / 0.7 Nm 10 AWG / 6.2 lbf in	4 mm ² / 0.7 Nm 10 AWG / 6.2 lbf in
Peso	kg	2.7	6.2

Tabella 9 Dati tecnici resistenze di frenatura per Power Module PM240-2, grandezze costruttive FSD ... FSF

N. ordinazione	JJY0234-	22620001	24020001	34020001	54020001	64020001
Adatto per Power Module grandezza costruttiva		FSD	FSD	FSE	FSF	FSF
Resistenza	Ω	25 con In ≤ 45A	15 con ln > 45A	10	7.1	5
Potenza tipica PDB	W	1100	1850	2750	3850	5500
Potenza di picco Pmax	kW	22	37	55	77	110
Durata del carico per la potenza di picco Ta	S	→Figura 12				
Periodo del ciclo di carico del freno T	s	→Figura 12				
Grado di protezione		IP21	IP21	IP21	IP21	IP21
Collegamento di potenza		10 mm ² / 0.8 Nm 8 AWG / 7.1 lbf in	10 mm ² / 0.8 Nm 8 AWG / 7.1 lbf in	16 mm ² / 1.2 Nm 6 AWG / 4.5 lbf in	10 mm ² / 0.8 Nm 8 AWG / 7.1 lbf in	16 mm ² / 1.2 Nm 6 AWG / 4.5 lbf in
Peso	kg	7.0	9.5	13.5	7	13.5

Cicli di carico

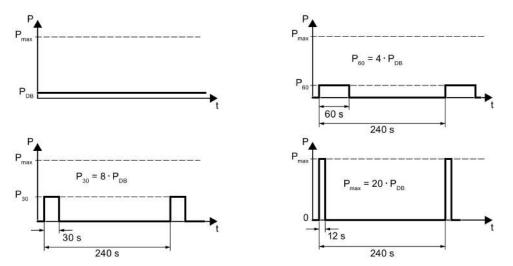


Figura 12 Potenza impulsiva, potenza nominale ed esempi della durata di accensione della resistenza di frenatura

Periodo del ciclo di carico del freno T[s]

Ta [s] Durata del carico per la potenza di picco

PDB [W] Potenza tipica della resistenza di frenatura

P_{max} [W]Potenza di picco della resistenza di frenatura

6 CONTROL UNIT CU310-2 PN (PROFINET)

6.1 DESCRIZIONE

Le Control Unit sono state progettate per poter funzionare su un Power Module con forme costruttive Blocksize.

La Control Unit CU310-2 PN (PROFINET) è un'unità di regolazione per azionamenti singoli, nella quale si svolgono le funzioni di regolazione e di comando dell'azionamento.

Questa unità controlla i Power Modul Blocksize tramite l'interfaccia PM-IF e viene montata direttamente sul Power Module.

Nella tabella sono elencate le interfacce della CU310-2 PN

Tabella 10 Panoramica delle interfacce della CU310-2 PN

Tipo	Quantità
Ingressi digitali con separazione di potenziale	11
Ingressi/uscite digitali con separazione di potenziale	8
Uscita digitale con separazione di potenziale	1
Ingresso analogico senza separazione di potenziale	1
Interfaccia DRIVE-CLiQ	1
Interfacce PROFINET	2
Interfaccia seriale (RS232)	1
Interfaccia encoder (HTL/TTL/SSI)	1
LAN (Ethernet)	1
Ingresso sensore di temperatura	1
Morsetto EP	1
Prese di misura	3

NOTA:

Per le caratteristiche delle interfacce e degli ingressi/uscite fare riferimento al manuale SIEMENS S120-GH6

6.2 AVVERTENZA DI SICUREZZA

AVVERTENZA

Pericolo di incendio in caso di surriscaldamento in caso di spazi liberi di ventilazione insufficienti:

- Rispettare assolutamente uno spazio libero di ventilazione di 50 mm sopra e sotto la Control Unit e il Control Unit Adapter.
- Accertarsi che le aperture di ventilazione non siano ostruite da cavi di collegamento.

AVVERTENZA

Una parametrizzazione errata può provocare malfunzionamenti delle macchine e di conseguenza il rischio di morte o lesioni.

6.3 DESCRIZIONE DELLE INTERFACCE

Panoramica

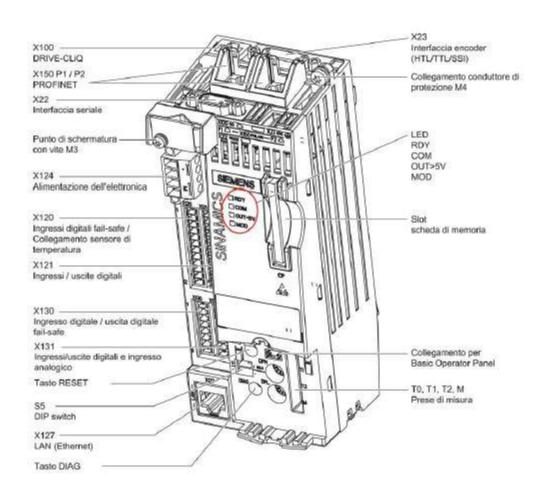


Figura 13 Panoramica interfacce CU310-2 PN

Nota:

Lo switch degli indirizzi PROFIBUS sulla CU310-2 PN non svolge alcuna funzione.

Scheda di memoria

Vanno utilizzate solo schede di memoria CFC Siemens con la CU310-2 PN, sulle quali viene precaricato di fabbrica il software di gestione dell'ascensore.

NON RIMUOVERE PER NESSUN MOTIVO LA COMPACT-FLASH. RISCHIO DI DANNEGGIAMENTO/PERDITA SOFTWARE

6.4 SIGNIFICATO DEI LED

Funzione dei LED

Sul lato frontale dell'involucro della CU310-2 PN si trovano quattro LED (vedere Panoramica interfacce CU310-2 PN, Figura 13).

Tabella 11 LED

RDY	Ready	
COM	Stato della comunicazione del bus di campo	
OUT>5V	Alimentazione encoder > 5 V (TTL / HTL)	
MOD	Modo operativo (riservato)	

Durante l'avvio della Control Unit i singoli LED possono essere spenti o accesi (a seconda della condizione in cui si trova il sistema). Se il sistema è acceso, il colore dei LED indica lo stato della fase di avviamento corrispondente (vedere Comportamento dei LED all'avvio).

In caso di errore l'avviamento si interrompe nella fase in cui si trova il sistema. I LED accesi conservano il colore che avevano in quel momento per consentire di individuare l'errore in base alla combinazione di LED accesi e spenti.

Se invece la CU310-2 PN si avvia senza errori, tutti i LED si spengono per un breve periodo di tempo. Il sistema è pronto per il funzionamento quando il LED "RDY" diventa verde.

Con il sistema in funzione tutti i LED sono controllati dal software caricato (vedere comportamento LED durante il funzionamento)

Comportamento dei LED all'avvio

Per informazioni riguardo alla fase di avvio con verifica software/firmware fare riferimento al manuale SIEMENS S120 - GH6 AC Drive

Comportamento dei LED durante il funzionamento

Tabella 12 Descrizione dei LED durante il funzionamento della CU310-2 PN

LED	Colore	Stato	Descrizione/causa	Rimedio
RDY (READY)	-	Spento	L'alimentazione dell'elettronica manca oppure non rientra nel campo di tolleranza.	Verificare l'alimentazione elettrica del motore
	Verde	Luce fissa	Il componente è pronto per il funzionamento. La comunicazione ciclica DRIVE-CLiQ è in corso.	-
		Luce lampeggiante 1x2 sec	Messa in servizio/reset	-
		Luce lampeggiante 2x1 sec.	Scrittura sulla scheda di memoria.	-
	Rosso	Luce lampeggiante 2x1 sec.	Errori generici	Verificare la parametrizzazione/ configurazione
	Rosso/ Verde	Luce lampeggiante 1x2 sec	Control Unit pronta per il funzionamento, mancano però le licenze software.	Installare le licenze mancanti
	Arancione	Luce lampeggiante 1x2 sec	Aggiornamento del firmware dei componenti Drive-CLiQ collegati in corso.	-
		Luce lampeggiante 2x1 sec.	Aggiornamento del firmware dei componenti Drive-CLiQ completato. Attesa del Power On del componente in questione.	Inserire alimentazione elettrica del componente.
	Verde/ Arancione oppure Rosso/	Luce lampeggiante 2x1 sec.	Il riconoscimento del componente tramite LED è attivato (vedere il manuale delle liste SINAMICS S120/S150). Nota: Le due possibilità dipendono dallo stato del	-
	Arancione		LED all'attivazione.	

DISEGNO QUOTATO

AVVERTENZE: le quote riportate vanno sommate insieme agli ingombri del Power Module

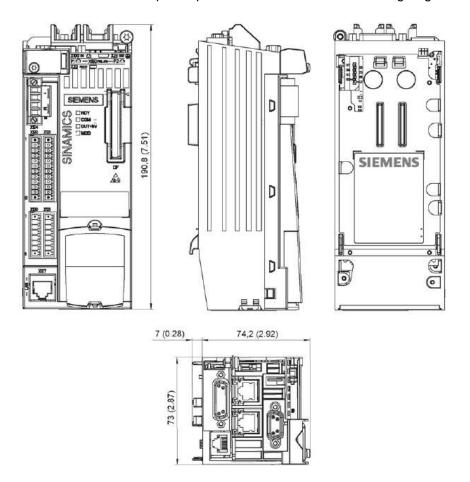


Figura 14 Disegno quotato Control Unit CU310-2 PN, tutte le indicazioni sono in mm (pollici)

6.6 DATI TECNICI

6SL3040-1LA01-0AA0	Unità	Valore	
Alimentazione	VDC	DC 24 (20.4 28.8) raddrizzata	
Tensione	ADC	0.8	
Corrente (senza DRIVE-CLiQ e uscite digitali)			
Potenza dissipata	W	<20	
Lunghezza massima cavi DRIVE-CLiQ	m	100	
Collegamento PE/massa	Sulla custodia con vite M4/3 Nm		
Tempo di reazione	Il tempo di reazione degli ingressi/uscite digitali dipende dalla valutazione (1)		
Ingressi:	VDC	-330	
- Corrente assorbita (a 24V)	mA	6	
- Livello segnale (incl. ondulaz.)			
- Alto	V	1530	
- Basso	V	-35	
Uscita:	VDC	24	
- Corrente carico max.	mA	500	
Peso	Kg	0.95	

⁽¹⁾ Per informazioni vedere il Manuale delle liste SINAMICS S120/S150, capitolo "Schemi logici".

6.7 MONTAGGIO

Power Module Blocksize

La Control Unit (CU310-2 PN) può essere montata sui Power Module Blocksize di tutte le grandezze costruttive. La comunicazione tra gli apparecchi avviene attraverso l'interfaccia PM-IF.

Montaggio

- 1. Inserire la Control Unit sul PM.
- 2. Spingere indietro la Control Unit fino a farla scattare nella linguetta blu di ritenuta. Le illustrazioni mostrano il montaggio della Control Unit sulla PM.

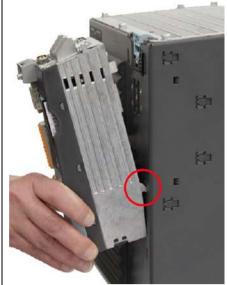


Figura 15 Inserimento della CU310-2 PN sulla PM

PM con la CU310-2 PN montata

Smontaggio

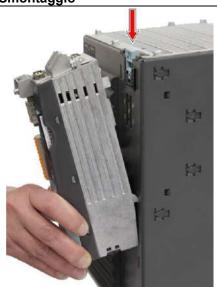


Figura 16 Smontaggio della CU310-2 PN dal PM

- 1. Premere verso il basso la linguetta blu di ritenuta (vedere la freccia).
- 2. Rimuovere la Control Unit spingendola in avanti.

7 COLLEGAMENTI ELETTRICI

7.1 COLLEGAMENTO CIRCUITO DI POTENZA

Tutte le connessioni elettriche, devono essere effettuate nel rispetto di quanto riportato nella tabella seguente:

U1;V1;W1 L1; L2; L3	Ingresso alimentazione rete	Collegare le fasi di ingresso della rete di alimentazione, indipendentemente dal suo senso ciclico.
U2;V2;W2	Uscita inverter	Collegare le tre fasi ai contattori e quindi al motore.
R1; R2-	Resistenza esterna di frenatura	Collegare la resistenza esterna di frenatura (necessaria se inverter salita+discesa).
÷	Terra	Collegare alla terra dell'impianto.

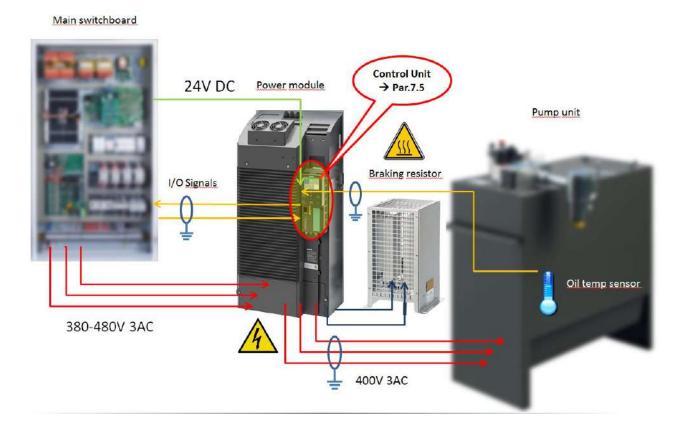
7.2 AVVERTENZE

- 1- Non alimentare l'inverter senza aver fatto il collegamento a terra.
- 2- Per aumentare la protezione dell'inverter (specialmente contro sovratensioni dovute ad eventi atmosferici), si possono prevedere, in serie ai morsetti d'ingresso della rete d'alimentazione, tre fusibili extrarapidi (uno per ogni fase), dimensionati in funzione delle diverse taglie.
- 3- Allo scopo di non danneggiare irrimediabilmente l'inverter, non connettere resistenze di frenatura che abbiano valori ohmici o di potenza inferiori a quelli riportati nella relativa tabella (vedi).
- 4- L'inverter va collegato "a monte" dei contattori di potenza.
- 5- Durante il funzionamento la resistenza esterna di frenatura si riscalda. Non fissarla vicino a materiali infiammabili, o a contatto con essi, proteggerla per evitarne il contatto diretto
- 6- Effettuare un cablaggio di terra e delle masse a regola d'arte.
- 7- Fare particolare attenzione al collegamento di potenza, se si cambiano fra di loro ingresso e uscita, si ha la rottura dell'inverter.

7.3 REGOLE PER IL CABLAGGIO INVERTER – MOTORE CONFORME EMC

Per eseguire un corretto cablaggio del gruppo INVERTER – MOTORE, oltre a quanto descritto nel Capitolo 4 sulla compatibilità elettromagnetica (EMC), seguire le procedure descritte di seguito:

- 1- La terra generale dell'edificio, deve essere connessa direttamente sia all'inverter sia al motore.
- 2- I cavi di potenza per il collegamento inverter/contattori e contattori/motore devono essere più corti possibile, quadripolari (tre fasi più filo giallo/verde di terra) di tipo schermato, oppure quattro cavi non schermati fasciati fra loro e inseriti all'interno di una canalina o un tubo metallico collegato a terra. In altre parole, nello stesso cavo o nello stesso tubo ci deve essere un conduttore di terra il più vicino possibile ai cavi di potenza. Nel caso di cavo schermato, deve essere garantita la continuità della calza di terra fra il tratto inverter/contattori e contattori/motore.
 - È consigliabile collegare lo schermo a terra da entrambi i lati, con una connessione a 360° o con morsetti speciali.
 - Nel caso che la connessione dello schermo a terra a 360° non sia possibile all'interno della morsettiera del motore, si deve mettere a terra lo schermo sulla carcassa prima di entrare in morsettiera.
- 3- Anche se non è indispensabile, è bene mettere il cavo schermato anche nella linea di potenza in ingresso, in modo da evitare che disturbi irradiati siano portati all'esterno dal cavo.
- 4- I cavi di potenza (ingresso e uscita) e i cavi di comando inverter devono essere il più lontano possibile e non essere paralleli, anche se schermati; nel caso che i cavi si incrocino, devono essere disposti in modo da formare un angolo di 90°
- 5- Indipendentemente dalla connessione alla terra generale dell'edificio, la carcassa del motore DEVE essere collegata sia allo schermo del cavo, sia al conduttore giallo/verde di terra che si trova all'interno del cavo schermato.
- 6- L'inverter emette disturbi irradiati, di conseguenza questi disturbi possono essere captati e portati all'esterno del quadro, dei cavi, in particolare dai cavi flessibili che li irradiano nel vano corsa. Se si vuole evitare questo inconveniente, per i collegamenti dei comandi fra logica quadro e inverter, è necessario usare conduttori schermati con lo schermo collegato a terra da entrambi i lati. Non è



consentito usare cavi schermati con lo schermo non collegato a terra, in quanto i disturbi, in tal caso, sono maggiori che con il cavo senza schermo.

Qualsiasi conduttore di un cavo multipolare libero e non utilizzato, deve essere collegato a terra da entrambi i lati.

- 7- Qualunque cavo, sia di comando che di collegamento esterno per vano e cabina, non deve mai essere vicino e parallelo al cavo di potenza, anche se schermato; se per necessita devono essere paralleli, devono essere in canaline metalliche distinte.
- 8- Tutti i collegamenti di terra devono essere il più corto e largo possibile.
- 9- Per evitare interventi indesiderabili dell'interruttore differenziale è bene:
 - Fare collegamento di potenza il più corto possibile
 - Usare interruttori differenziali idonei (tipo A o B da 30mA)
 - Diminuire (ove possibile) la frequenza portante dell'inverter: infatti più bassa è la frequenza, maggiore è il rumore del motore, ma minori sono le correnti di fuga versa terra e i disturbi EMC; gli avvolgimenti del motore risultano meno stressati.

7.4 SCHEMA ELETTRICO GENERALE DI CONNESSIONE SIEMENS S120

7.5 SCHEMA ELETTRICO DI CONNESSIONE CONTROL UNIT SIEMENS S120

Di seguito è riportato uno schema per l'esecuzione del cablaggio della Control Unit (CU) dell'inverter con tutti i collegamenti elettrici. Tutte le alimentazioni a 24V sono da intendersi in corrente continua (DC) raddrizzata. **Evidenziati in rosso i collegamenti che devono essere realizzati**.

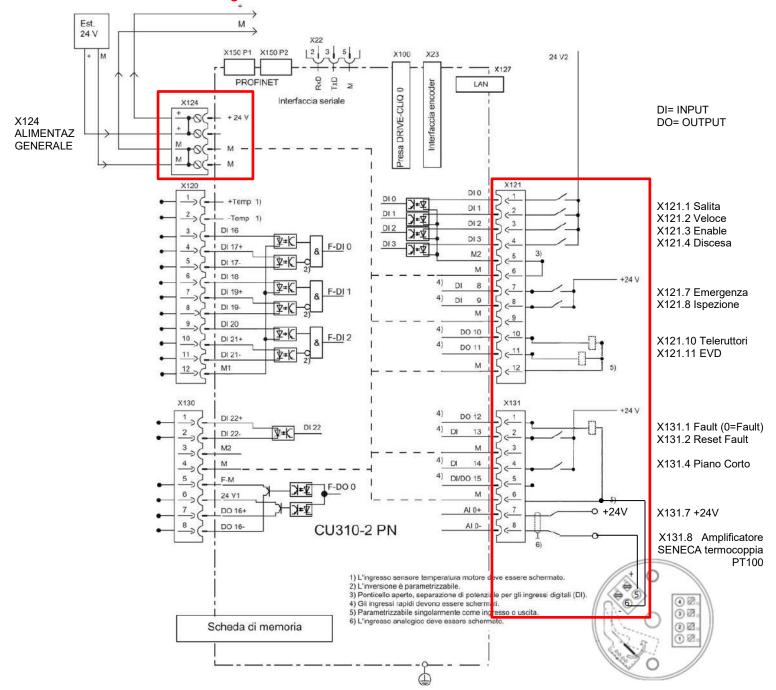


Figura 17 Esempio di collegamento CU310-2 PN senza funzione Safety

La porta X131.2 può essere utilizzata per resettare automaticamente alcuni errori del Sistema da parte del quadro elettrico, sulla base della valutazione eseguita da quest'ultimo.

I comandi X121.7-Emergenza e X131.4-Piano Corto, consentono di settare specifici valori ridotti dell'alta velocità che verranno impiegati al posto del valore standard dell'alta velocità.

X121.7 è da intendersi come un comando +24V da utilizzare qualora si voglia ridurre la potenza impegnata in condizioni di alimentazione tramite UPS (ad esempio in condizioni d'emergenza attivate dai vigili del fuoco). Vedi paragrafo 11.4.4.

X121.7 non è il comando di discesa d'emergenza in caso di mancanza di tensione per attivare l'apertura della valvola!

Le uscite (DO) sono dei segnali +24V che garantiscono max 0,5A e non sono in grado di alimentare direttamente le bobine

7.6 TERMOCOPPIA

Per il corretto funzionamento dell'inverter e garantire le compensazioni di temperatura, deve essere collegata una termocoppia PT100 e il relativo trasmettitore amplificato ai terminali X131.7 e X131.8 della CU.

OmarLift fornisce in dotazione una termocoppia e un amplificatore SENECA, posizionato nella scatola elettrica.

Dati tecnici dell'amplificatore:

T120

TRASMETTITORE A 2 FILI PER SONDE PT100 E NI100

Descrizione Generale

Lo strumento T120 converte un segnale di temperatura letto tramite sonde PT100 (EN 60 751) o NI100 con collegamento a 2, 3 o 4 fili in un segnale normalizzato in corrente per loop 4. 20 mA (tecnologia 2 fili).

Caratteristiche del modulo sono:

%Elevata precisione

%Conversione della misura a 16 bit

%Ridottissimo ingombro

%Configurabilità mediante PC con software dedicato KT120 scaricabile dal sito www.seneca.it

Caratteristiche Tecniche

Ingresso PT100 - EN 60751/A2 (ITS-90)

Ingresso NI100

Range di misura : -60 - +250 °C
Range di resistenza : $69 \Omega - 290 \Omega$ Minimo span : 20 °C
Corrente sul sensore : $750 \mu A$ Nominale
Resistenza dei cavi : 25Ω Massima per filo
Collegamento : $2, 3 \circ 4$ fili
Risoluzione : $6 m \Omega$

Uscita/Alimentazione

Campo di funzionamento:
Uscita in corrente :

Resistenza di carico :

\$\begin{align*}
5-30 \text{ Voc} \\
4-20 \text{ mA}, 20-4 \text{ mA} \text{ (tecnologia 2 fili)} \\
1 k\(\Omega\) @ 26 \text{ Voc}, 21 \text{ mA} \text{ (vedere diagramma Resistenza di carico vs Tensione minima di funzionamento a pag. 2)}

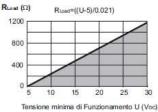
\$\begin{align*}
5-30 \text{ Voc} \\
4-20 \text{ mA}, 20-4 \text{ mA} \text{ (tecnologia 2 fili)} \\
1 k\(\Omega\) @ 26 \text{ Voc}, 21 \text{ mA} \text{ (vedere diagramma filication vs.)} \\
Resistenza \text{ di carico vs.} \text{ Tensione minima di funzionamento a pag. 2)}
\$\end{align*}\$

Risoluzione : 1 μA(>14 bit)

Uscita in caso di over-range : 102,5% del fondo scala (veditabella a pag. 3)
Uscita in caso di guasto : 105% del fondo scala (veditabella a pag. 3)

Protezione uscita in corrente : circa 30 mA

SENECA


MI001352-I

ITALIANO - 1/6

Altre Caratteristiche

50 Hz e 60 Hz (impostabile) Rejezione alla freg, di rete Massimo tra 0,1 % (del campo di misura) o 0,1 °C Errore di trasmissione : Errore per EMI(*): < 0.5% Influenza della resistenza 0.005 Ω/Ω < 100 ppm, Tipico: 30 ppm Coefficiente di Temperatura: Periodo di Campionamento: 100 ms (con reiezione ai 50 / 60 Hz disabilitata) 300 ms (con reiezione ai 50 / 60 Hz abilitata) < 220 ms (con reiezione ai 50 / 60 Hz disabilitata) Tempo di risposta (10..90 %): < 620 ms (con reiezione ai 50 / 60 Hz abilitata) Grado di protezione Temperatura -40 -+85 °C Umidità 30 - 90 % a 40 °C non condensante Condizioni ambientali Altitudine: 2000 m slm -40 - +105 °C Temp. magazzinaggio: Connessioni: Morsetti a molla Sezione dei conduttori : 0.2..2.5 mm Spellatura dei conduttori : 8 mm Contenitore: Nvlon / Vetro, colore nero Dimensioni : 20.0 mm x 6 44.0 mm Vormative EN61000-6-4/2002-10 (emissione elettromagnetica, ambiente industriale) EN61000-6-2/2006-10 (immunitation elettromagnetica, ambiente industriale)

Diagramma: Resistenza di Carico vs tensione minima di funzionamento

(*) EMI: interferenze elettromagnetiche.

SENECA

MI001352-I

ITALIANO - 2/6

Configurazione di Fabbrica

Lo strumento esce dalla fabbrica con la seguente configurazione di default che corrisponde (salvo diversa indicazione riportata sullo strumento) a :

Collegamento RTD Filtro Ingresso → 3 fili presente NO Inversione Uscita PT100 0 °C 100 °C Tipo RTD Inizio Scala di misura

Inizio Scala di misura
Fondo Scala di misura
→ 100 °C
Uscita per Guasto
→ verso l'alto della scala di uscita
→ SI: ammesso fuoriscala del 2,5%, guasto al 5%

Configurazione e accessori

La configurazione del modulo tramite PC (vedi disegno sottostante) è possibile utilizzando i seguenti accessori: S117P: USB to RS232/TTL

PM002411: Cavo di collegamento tra S117P e T120 KT120: Software di programmazione dedicato

Il modulo può essere configurato anche se non alimentato dal loop 4..20 mA, traendo alimentazione tramite il connettore di programmazione.
Una volta in possesso degli accessori sopra descritti è possibile impostare i seguenti

%Inizio e Fine scala di misura.

%Collegamento RTD: 2 fili, 3 fili, 4 fili.

%Reiezione a 50 e 60 Hz (*): Assente o Presente

%Filtro di misura: Assente o Presente (1, 2, 5, 10, 30, 60 secondi).

%Uscita: Normale (4 - 20 mA) o Invertita (20 - 4 mA).

%Tipo RTD: PT100 o NI100.

%Compensazione resistenza cavi permisura a 2 fili.

%Impostazione valore uscita in caso di quasto; verso il basso della scala di uscita o verso l'alto della scala di uscita.

È inoltre possibile la calibrazione della scala dell'uscita.

(*) Il filtro stabilizza la misura ma rallenta il tempo di risposta portandolo a circa 620 ms, inoltre garantisce la reiezione del disturbo a 50 / 60 Hzsovrapposto al segnale di misura. (**) Per i valori corrispondenti vedasi la tabella sottostante.

Limite dell'uscita	Over-range / Guasto ± 2,5 %	Guasto ± 5 %
20 mA	20,4 mA	21 mA
4 mA	3.6 mA	< 3.4 mA

MI001352-I

Vista lato frontale: Posizione e numerazione morsetti

Collegamenti Elettrici

Ingresso

Il modulo accetta in ingresso una sonda di temperatura PT100 (EN 60 751) o NI100 con collegamento a 2, 3 o 4 fili.

Per i collegamenti elettrici si raccomanda l'utilizzo di cavo schermato.

Collegamento a 2 fili Collegamento utilizzabile per brevi distanze (< 10 m) tra il modulo e la sonda. Va tenuto presente che questo collegamento introduce nella misura un errore pari alla resistenza dei cavi di collegamento (eliminabile via software).

Il modulo deve essere opportunamente programmato da PC per collegamento a 2 fili.

Collegamento a 3 fili

Collegamento da utilizzare per distanze medio-lunghe (> 10 m) tra il modulo e la sonda. Lo strumento esegue la compensazione della resistenza dei cavi di collegamento. Affinché tale compensazione sia corretta è necessario che la resistenza di ciascun conduttore sia uguale, in quanto lo strumento per effettuare la compensazione misura la resistenza di un conduttore e suppone che la resistenza degli altri cavi sia identica.

Il modulo deve essere opportunamente programmato da PC per collegamento a 3 fili.

MI001352-I

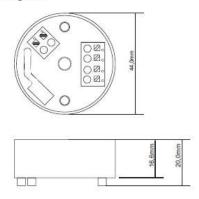
ITALIANO - 4/6

Collegamento a 4 fili
Collegamento da utilizzare per distanze medio-lunghe (> 10 m) tra il modulo e la sonda. Permette di ottenere la massima precisione dato che lo strumento legge la resistenza del sensore indipendentemente dalla resistenza dei conduttori.

Il modulo deve essere opportunamente programmato da PC per collegamento a 4 fili:


Collegamento loop corrente (corrente regolata).

Per i collegamenti elettrici si raccomanda l'utilizzo di cavo schermato.


Nota: per ridurre la dissipazione dello strumento, è conveniente collegare un carico > 250

Schema funzionamento morsetti con Connessione Push-wire

SSENECA MI001352-I ITALIANO - 5/6

Dimensioni e ingombri

Smaltimento dei rifiuti elettrici ed elettronici (applicabile nell'Unione Europea e negli altri paesi con servizio di raccolta differenziata).

Il simbolo presente sul prodotto o sulla sua confezione indica che il prodotto non verrà trattato come rifiuto domestico. Sarà invece consegnato al centro raccolta autorizzato per il riciclo dei rifiuti elettrici ed elettronici. Assicurandovi che il prodotto venga smaltito in modo adeguato, eviterete un potenziale impatto negativo sull'ambiente e la salute umana, che potrebbe essere causato da una gestione non conforme dello smaltimento del prodotto. Il riciclaggio dei materiali contribuirà alla conservazione delle

Questo documento è di proprietà SENECA srl. La duplicazione e la riproduzione sono vietate, se non autorizzate. Il contenuto della presente documentazione corrisponde ai prodotti e alle

SENECA s.r.l.

Via Austria, 26 - 35127 - PADOVA - ITALY Tel. +39.049.8705355 - 8705359 - Fax +39.049.8706287

e-mail: info@seneca.it

MI001352-I/E

ITALIANO - 6/6

8 PROGRAMMAZIONE TRAMITE COMPUTER WEBSERVER

La programmazione tramite PC potrebbe non essere disponibile con funzionalità complete su tutte le tipologie di impianto, in base alle caratteristiche dell'inverter SIEMENS (richiesto CFC v4.7 o superiori)

È possibile eseguire la messa in servizio tramite PC utilizzando il software la funzionalità WEBSERVER o il software STARTER. In alternativa è sempre possibile impostare i parametri tramite il pannello operatore BOP.

La funzionalità Websever è già precaricata sull'inverter.

Il software STARTER è scaricabile gratuitamente dal sito SIEMENS (https://support.industry.siemens.com) digitando SINAMICS MICROMASTER STARTER e scegliendo come *Tipo di articolo*: DOWNLOAD e cliccando sullo strumento di ricerca.

Per le versioni CFC V4.8 e successive è possibile usufruire della funzionalità trace con KHP (Know How Protection) attivato.

Alcune funzionalità o parametri descritti nei seguenti paragrafi possono non risultare accessibili se è attivata la protezione know-how.

8.1 COLLEGAMENTO WEBSERVER

Le seguenti istruzioni sono relative a Windows 7, ma per le altre versioni Windows i concetti da applicare sono i medesimi, anche se le schermate e/o la sequenza potrebbero differire leggermente.

È possibile eseguire il collegamento al sistema di connessione dell'inverter, tramite l'uso di qualsiasi browser come: Explorer (versione successiva alla 7), Mozilla (versione successiva alla 35) Google Chrome (versione successiva alla 69), da tenere in considerazione che potranno verificarsi piccole variazioni da una versione all'altra. Con Google Chrome è possibile avere difficoltà di collegamento con il sito SIEMENS, ma è possibile risolvere il problema andando a modificare le impostazioni generali del browser.

- 1. Effettuare il collegamento tra il PC e l'inverter, attraverso il cavo LAN e il connettore X127 sulla CU della macchina.
- 2. Digitare sulla barra URL del browser l'indirizzo 169.254.11.22
- 3. Digitare SINAMICS come nome utente senza password e cliccare *Login* per accedere al proprio portale

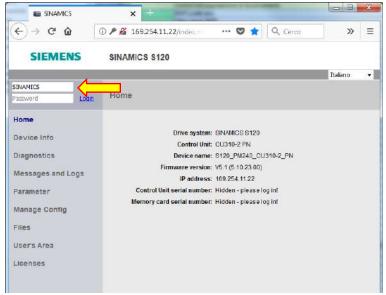


Figura 18 - Schermata principale SIEMENS S120

8.2 MENU

Di seguito sono descritti le principali funzioni del menu generale sulla sinistra.

 In Home oltre ad elencare tutte le sezioni di cui è composto il collegamento con l'interfaccia SIEMENS, vengono riportate anche le principali caratteristiche dell'inverter come il modello di *Drive system e* della *Control Unit*, il nome del dispositivo *Device name*, la versione CFC *Firmware version*, l'indirizzo IP 169.254.11.22, il numero di serie della Control Unit *Control Unit serial number* ed infine il numero di serie della scheda di memoria *Memory card serial number* (Figura 19)

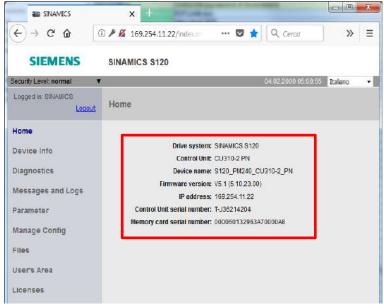


Figura 19 - Schermata SIEMENS S120, Menu generale

2. Nella sezione *Device Info* vengono indicati i componenti installati. Attraverso la legenda LED è possibile interpretare lo stato della Control Unit e del Drive

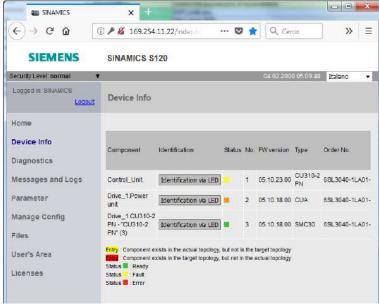


Figura 20 - Schermata SIEMENS S120, Device Info

3. In *Diagnostic*: *Service overview*, viene identificato lo stato operativo della parte di potenza e dell'unità di controllo

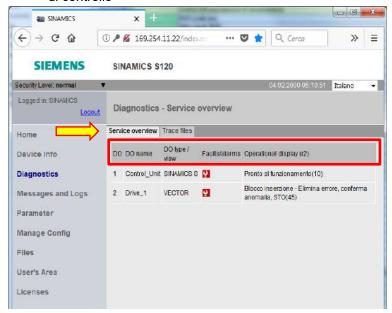


Figura 21 - Schermata SIEMENS S120, Diagnostics

- 4. In Messages and Logs, scheda Alarm display vengono mostrati messaggi di stato:
 - *TIME* presenta data e ora dell'accadimento con valenza puramente indicativa di ordine di sequenza in quanto non è un reale riferimento temporale.
 - TYPE identifica il tipo di segnalazione in Avviso (A) e Fault (F).
 - DRIVE OBJECT, indica l'area in cui si è verificata l'anomalia (Drive o Control Unit)
 - ALARM, riporta il codice dell'errore o dell'avviso (es:13000, 3505, 1073, ecc...) che si riferisce
 al tipo di problema riscontrato, seguito da una breve descrizione. In base a questo codice sarà
 possibile risalire alla causa e alla soluzione del problema approfondendo l'argomento nel
 manuale SIEMENS LH1 Manuale delle Liste (Figura 22)

ATTENZIONE: Aknowledge faults consente cliccando sul pulsante di accettare e resettare gli eventuali errori presenti che così scompariranno dalla schermata di segnalazione.

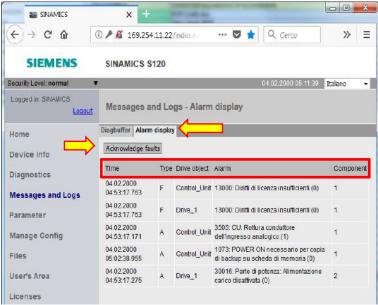


Figura 22 - Schermata SIEMENS S120, Messages and Logs

5. Parameter consente la lettura e modifica dei parametri di sistema dell'inverter.

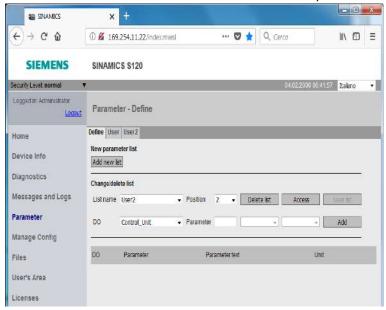


Figura 23 - Schermata SIEMENS S120, Parameter

- 6. *Manage Config., Files e User's Area* sono sezioni che non presentano funzioni di interesse per l'Utente.
- 7. *Licenses* raggruppa le licenze software installate sulla macchina e/o problemi, attività richieste relativi alle stesse.

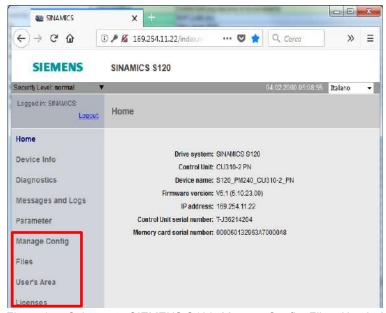


Figura 24 - Schermata SIEMENS S120, Manage Config., Files, User's Area, Licenses

8.3 PERSONALIZZAZIONE DEI PARAMETRI

Accedendo alla sezione *Parameter*, è possibile aggiungere, cancellare o modificare una lista nuova o già esistente ed è possibile modificare il valore dei parametri stessi.

8.3.1 Modifica del valore di un parametro

Nella sezione *Parameter* sono disponibili almeno due schermate: *DEFINE* e, nell'esempio della foto, *USER*. Selezionando la schermata relativa alla funzione di interesse, è possibile vedere e modificare i valori della lista di parametri abilitati (R=Read, leggibili; P=Programmable, modificabili), quando necessario

- DO sono rappresentati i parametri relativi al Drive o alla Control Unit
- Parameter contiene il numero identificativo del parametro
- Parameter text, descrive la funzione del parametro
- Value indica il valore attuale assunto o impostato
- Change permette di modificare il valore dei parametri

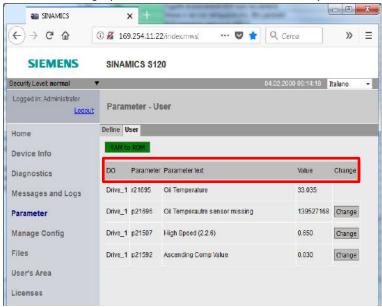


Figura 25 - Schermata SIEMEN S S120, Parameter - User list

ATTENZIONE per poter apportare qualsiasi modifica al parametro di interesse, fare click Change> nuovo_valore>Submit (per separare i decimali usare il punto "." e non la virgola ",").
I parametri scrivibili sono solo quelli che iniziano per "p".

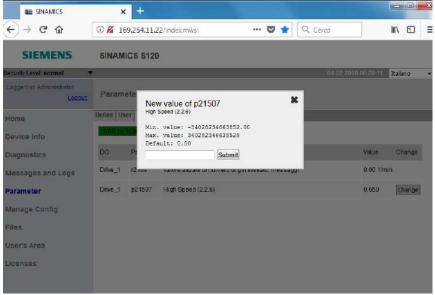


Figura 26 - SIEMENS S120, Modifica parametro p21507 - New value

8.3.2 Salvataggio delle modifiche

ATTENZIONE: Terminate le modifiche dei parametri, è NECESSARIO cliccare il pulsante rosso RAM to ROM altrimenti le variazioni apportate non verranno salvate definitivamente ed andranno perse al primo spegnimento dell'inverter.

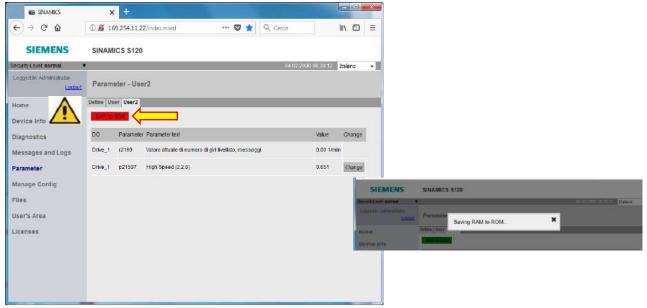


Figura 27 - Schermata SIEMENS S120, Parameter – salvataggio modifiche non eseguito

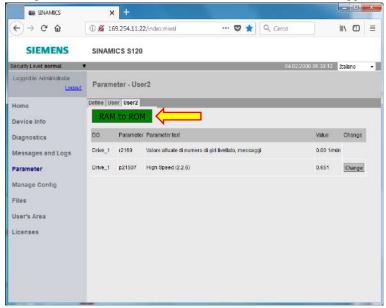


Figura 28 Schermata SIEMENS S120, Parameter – salvataggio delle modifiche effettuato

Terminata la sessione eseguire il Logout per assicurarsi che tutte le modifiche apportate vengano salvate correttamente.

8.3.3 Aggiunta di una nuova lista di parametri

- Cliccare la linguetta Define
- Cliccare il pulsante Add new list
- Definire il nome in List name,
- Scegliere la tipologia di ciascun nuovo parametro (Control Unit o Drive)
- Digitare il codice del parametro d'interesse e se presente scegliere il relativo indice (ad esempio p7764[0], p7764[1])
- Premere Add per aggiungere il nuovo parametro scelto.
- Salvare le modifiche Save list al termine dell'inserimento di tutti i nuovi parametri.

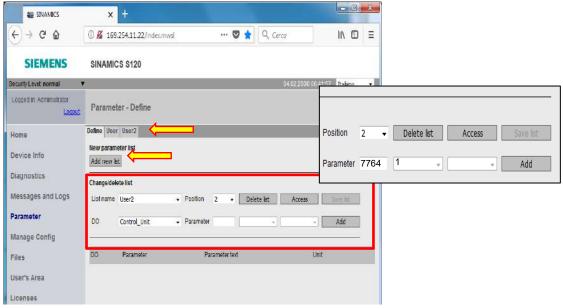


Figura 29 - Schermata SIEMENS S120, Parameter - Define list

 Aggiunta e salvata la nuova lista, si vedrà l'elenco di tutti i parametri predefiniti, si potranno selezionare cliccando sull'apposita linguetta. Come si nota nella Figura 30, a fianco di ogni voce dell'elenco ci sono i tasti UP e DOWN che permettono di scorrere verso l'alto o il basso l'ordine del parametro all'interno della lista. Premendo DEL invece si elimina il parametro.

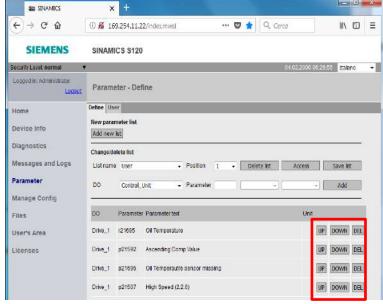


Figura 30 - Schermata SIEMENS S120, Parameter - Define list

9 SOFTWARE STARTER DOWNLOAD (OPTIONAL)

Nel caso si volesse installare sul PC il software STARTER per una messa in servizio più approfondita e dettagliata, è possibile effettuare il download gratuito dal sito SIEMENS, procedendo come segue:

- Accedere a https://support.industry.siemens.com
- Scegliere la sezione Download
- Digitare SINAMICS MICROMASTER STARTER nella barra di ricerca e scegliere come Tipo di articolo/ Entry type: DOWNLOAD, cliccando infine sulla lente di ricerca (Figura 31).

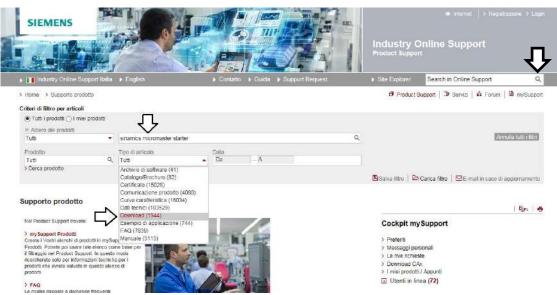


Figura 31- Ricerca per download di Sinamics Micromaster STARTER dal sito SIEMENS

8. Selezionare il link di interesse e procedere al salvataggio dei file compressi

10 PROGRAMMAZIONE TRAMITE TASTIERA E MENÙ

Per semplicità è preferibile eseguire la messa in servizio tramite PC utilizzando il software STARTER, piuttosto che impostare i parametri dal pannello operatore. Vedi Capitolo 8.

10.1 BASIC OPERATOR PANEL BOP20

10.1.1 Descrizione

Il Basic Operator Panel BOP20 è un semplice pannello operativo con sei tasti e un'unità di visualizzazione con retroilluminazione. Il BOP20 può essere installato e utilizzato sulle Control Unit SINAMICS CU310-2 PN.

Con questo pannello operativo si possono eseguire le seguenti funzioni:

- Inserimento di parametri e attivazioni di funzioni
- Visualizzazione di stati operativi, parametri, allarmi e anomalie

10.1.2 Descrizione delle interfacce

Figura 32 - Basic Operator Panel BOP20

Panoramiche delle visualizzazioni e dei tasti

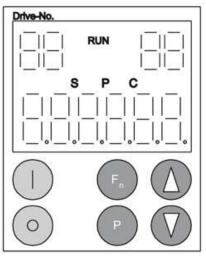


Figura 33 - Panoramica delle visualizzazioni e dei tasti

Tabella 14 Visualizzazioni

Visualizzazione	Significato
In alto a sinistra a 2 posizioni	Qui viene visualizzato l'oggetto di azionamento attivo del BOP. Le visualizzazioni e l'attivazione dei tasti si riferiscono sempre a questo oggetto di azionamento.
RUN	Si illumina quando l'azionamento si trova nello stato di RUN (esercizio).

In alto a destra a 2 posizioni	In questo campo vengono visualizzati i seguenti elementi: • Più di 6 cifre: caratteri ancora presenti ma non visibili (ad es. "r2"→2 caratteri a destra non visibili, "L1"→1 carattere a sinistra non visibile) • Anomalie: selezione/visualizzazione degli altri azionamenti che presentano delle anomalie • Identificazione degli ingressi BICO (bi,ci) • Identificazione delle uscite BICO (bo,co) Oggetto sorgente di un'interconnessione BICO inviato a un oggetto di azionamento diverso da quello attivo.		
S	Si illumina quando viene modificato almeno un parametro e il valore non è ancora stato salvato nella memoria non volatile.		
Р	Si illumina se il valore di un parametro diventa attivo solo dopo aver premuto il tasto P.		
С	Si illumina se è stato modificato almeno un parametro e il calcolo per la gestione dati coerente non è ancora stato avviato.		
In basso, 6 posizioni	Visualizzazione ad es. di parametri, indici, anomalie e allarmi.		

Tastiera del BOP20

Tabella 15 Layout della tastiera del BOP20

Tasto	Nome	Significato
	ON	Inserzione degli azionamenti, ai quali devono arrivare i comandi "ON/OFF1", "OFF2", "OFF3" dal BOP
lacksquare	SPENTO	Disinserzione degli azionamenti, ai quali devono arrivare i comandi "ON/OFF1" "OFF2" o "OFF3" dal BOP. Nota: L'efficacia di questi tasti può essere definita tramite parametrizzazione BICO (è possibile ad esempio il comando simultaneo di tutti gli assi disponibili tramite questi tasti). La parola di comando BOP corrisponde, nella sua struttura, alla parola di comando PROFIBUS.
FN	Funzioni	Il significato di questi tasti dipende dalla visualizzazione attuale. Nota: L'efficacia di questo tasto per la tacitazione di anomalie può essere stabilita tramite parametrizzazione BICO.
Р	Parametri	Il significato di questi tasti dipende dalla visualizzazione attuale. Se viene premuto "P" per 3s, viene eseguita "RAM to ROM" e scompare la "S" dal BOP
\triangle	Più elevato	I tasti sono in funzione del display attuale e consentono l'incremento o la riduzione di valori.
∇	Più basso	

Premere il tasto "FN" per reset errori

10.1.3 Visualizzazione e comando con il BOP

Con il BOP è possibile effettuare:

• Modifica dell'oggetto di azionamento attivo

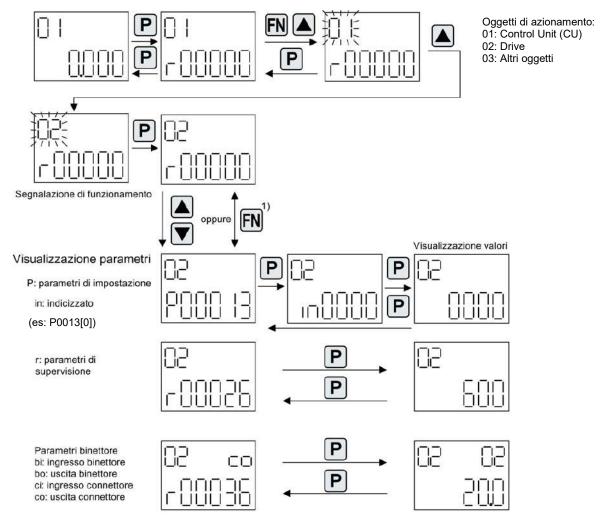
- Premere il tasto "FN" e "Freccia su" → il numero dell'oggetto di azionamento in alto a sinistra lampeggia
- Selezionare l'oggetto di azionamento desiderato con i tasti freccia
- Premere il tasto "P"

Visualizzazione del parametro

- Premere il pulsante "P"
- Selezionare il parametro desiderato con i tasti freccia
- Premere il tasto "FN" → viene visualizzato il parametro "r00000"
- Premere il tasto "P" → si torna alla segnalazione di funzionamento

Visualizzazione del parametro

I parametri si selezionano nel BOP20 tramite i rispettivi numeri di identificazione (Pxxxxx).


Per uscire dall'indicatore di funzionamento premere il tasto "P" nella visualizzazione parametri.

Con i tasti freccia si può ricercare il parametro.

Premendo nuovamente il tasto "P" si visualizza il valore del parametro.

Premendo contemporaneamente i tasti "FN" e uno dei tasti freccia, si può passare da un oggetto di azionamento all'altro.

Premendo il tasto "FN" nella visualizzazione dei parametri si può passare da "r00000" all'ultimo parametro visualizzato e viceversa.

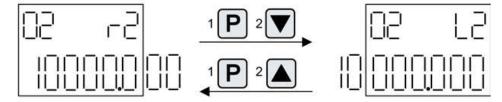
¹⁾ Premendo il tasto FN nella visualizzazione parametri è possibile passare da "r00000" all'ultimo parametro visualizzato.

Figura 34 Visualizzazione del parametro

Visualizzazioni valori

Visualizzazione della presenza ulteriori cifre a dx/sx delle sei visualizzate

Numero decimale ad es. r1084



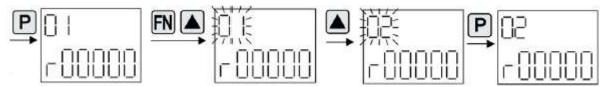
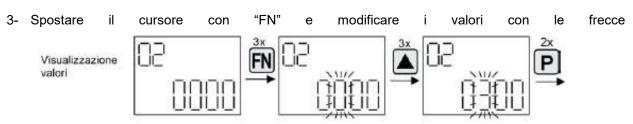


Figura 35 Visualizzazione valori

10.1.4 Esempio: modifica di un parametro


Modificare il parametro del drive P21507 alta velocità (2.2.6) da 0 a 300.

1- Dalla visualizzazione corrente passare alla visualizzazione parametri impostando l'azionamento 02 relativo al drive

2- Selezionare il parametro del drive da modificare (es: p21507 – alta velocità (2.2.6)) scorrendo con le frecce tenendole premute o ad impulsi

- 4- Confermare il valore immesso premendo "P". (2x): apparirà il numero del parametro modificato
- 5- Per procedere al settaggio di un altro parametro premere "FN" mentre viene visualizzato il N° dell'ultimo parametro modificato e ripetere dal punto 2-
- 6- Per terminare il settaggio, mentre viene visualizzato il N° dell'ultimo parametro modificato, premere "FN" e confermare con "P": verrà visualizzata la schermata di partenza.

Dopo aver effettuato la modifica dei parametri di interesse, è sempre necessario eseguire il salvataggio dei nuovi valori sulla memoria fisica della Control Unit, altrimenti andranno persi al primo spegnimento (volontario o accidentale) dell'inverter.

E' possibile procedere in due modi:

- a) tenere premuto "P" per 3s al termine della modifica dei parametri, il valore visualizzato lampeggerà diventando fisso al termine del salvataggio su ROM.
- b) Dopo aver settato tutti i parametri, selezionare P0971 (se abilitato) e settarlo a 1 (default=0), ciò attiva il trasferimento RAM-ROM

10.1.5 Visualizzazione dei guasti e degli allarmi

Visualizzazione delle anomalie

Figura 36 anomalie

Visualizzazione degli avvisi

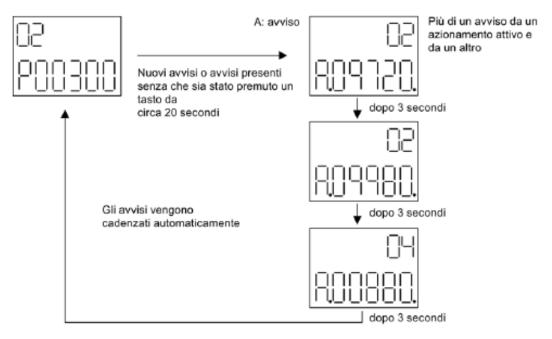


Figura 37 avvisi

Per altre funzioni o informazioni sul BOP20 fare riferimento al manuale per la messa in servizio SIEMENS IH1

10.1.6 Montaggio

Danni dovuti all'uso dei BOP

L'interfaccia per il BOP20 sulla CU310-2 può essere danneggiata in caso di impiego del BOP20.

• Fare attenzione a innestare o disinnestare correttamente il BOP20 nella CU310-2, senza inclinarlo verso l'alto o verso il basso.

Montaggio

Le figure mostrano il montaggio del Basic Operator Panel su una CU310-2

1. Rimuovere la copertura cieca premendo contemporaneamente sulle linguette di incastro ed estrarla frontalmente. 2. Premere contemporaneamente le linguette di incastro sul BOP20 e inserire quest'ultimo direttamente nella custodia della CU310-2 fino a farlo scattare in posizione.

CU310-2 con BOP montato.

NOTA:

Il BOP20 può essere inserito o estratto dalla Control Unit anche durante l'esercizio.

Smontaggio

- 1. Premere contemporaneamente le linguette di incastro del BOP20.
- 2. Mantenere premute le linguette ed estrarre il BOP20 in avanti senza inclinarlo.
- 3. Rimontare la copertura cieca.

Elementi di visualizzazione e comando del BOP20

Per informazioni sugli elementi di visualizzazione e comando del BOP20, vedere il Manuale per la messa in servizio SINAMICS S120.

11 PARAMETRI

I parametri possono essere modificati manualmente secondo le procedure illustrate nel Capitolo 10 oppure tramite il WEBSERVER come spiegato nel Capitolo 8.

11.1 VISUALIZZAZIONE LISTA PARAMETRI

Per eseguire una configurazione/modifica dei parametri che gestiscono l'ascensore, procedere come segue: La liste relative alle funzioni visibili in WEBSERVER, forniscono un'interfaccia rapida di accesso a tutti i parametri per la **configurazione e messa in servizio avanzata dell'inverter**.

Nella lista, i **parametri sono raggruppati per famiglie** in base al campo di intervento e per ciascun parametro, oltre ad un identificativo numerico, è disponibile una descrizione della funzione svolta.

Gli unici parametri che sono modificabili dall'utente sono quelli che iniziano con la lettera "p".

Mentre tutti i parametri che iniziano con la lettera "r" sono una visualizzazione del valore attuale della grandezza indicata.

NON MODIFICARE PARAMETRI PER I QUALI NON SI E' A CONOSCENZA DELL'EFFETTO: possibilità di conseguenze indesiderate e/o gravi per l'incolumità delle persone e per l'impianto.

11.2 MESSA IN SERVIZIO DELL'INVERTER

Tutte le attività di seguito descritte, possono essere eseguite in alternativa con il tastierino BOP o con il PC.

ATTENZIONE: E' necessario eseguire l'autoapprendimento dell'inverter prima di eseguire qualsiasi calibrazione in modo da adattarne il comportamento alle caratteristiche dell'impianto

Per eseguire l'autoapprendimento dell'inverter in maniera corretta, procedere come segue:

- 1. installare e predisporre completamente l'impianto (connessioni elettriche, tubazioni, riempimento olio centralina,...)
- 2. assicurarsi di avere dei pesi da poter caricare per raggiungere la pressione massima di esercizio dell'impianto (Pmax)
- 3. Solo se si usa il PC, avviare WEBSERVER e connettersi ONLINE al dispositivo
- 4. Solo se si usa il PC, accedere alla lista parametri *User* relativa al Drive.
- 5. Verificare che la temperatura dell'olio (vedi parametro r21695 del Drive, visibile come standard sul BOP) sia all'interno del range Tmin=20°C e Tmax=30°C. In caso Tolio<20°C, eseguire alcuni cicli di movimento in salita e discesa per incrementare la T olio. Se Tolio>30°C, lasciare raffreddare l'olio con l'impianto fermo. Se si usa il PC il parametro è visibile all'interno della famiglia di parametri *AUTOTUNING*,
- 6. Esequire l'autoapprendimento dell'impianto a vuoto (→su PC *User* vedi famiglia AUTOTUNING):
 - togliere ogni carico dalla cabina
 - impostare il parametro P21600=1
 - eseguire un normale ciclo di salita e discesa dell'ascensore
 - impostare il parametro P21600=0

In questo modo, i nuovi valori di coppia a vuoto rilevati visibili ai parametri r21620 e r21621 verranno copiati e salvati nei parametri di uso dell'inverter P21590 e P21595.

- 7. Eseguire l'autoapprendimento dell'impianto a pieno carico (→su PC User vedi famiglia AUTOTUNING):
 - caricare la cabina con i pesi per raggiungere Pmax
 - impostare il parametro P21601=1
 - eseguire un normale ciclo di salita e discesa dell'ascensore
 - impostare il parametro P21601=0

In questo modo, i nuovi valori di coppia a pieno carico rilevati visibili ai parametri r21622 e r21623 verranno copiati e salvati nei parametri di uso dell'inverter P21591 e P21596.

ATTENZIONE: Se la Tolio è al di fuori del range Tmin / Tmax i valori di autotuning non verranno acquisiti e i valori di coppia potrebbero risultare impostati a 0 generando un comportamento non soddisfacente dell'inverter e quindi dell'ascensore.

ATTENZIONE: Se non si imposta il parametro a 0 a fine prova, il sistema continuerà a rimanere in condizioni di autoapprendimento e l'impianto non funzionerà correttamente.

ATTENZIONE: Se durante la procedura viene a mancare tensione, i valori di coppia rimarranno settati a 0! Ripetere la procedura di autotuning dopo aver ripristinato tensione.

ATTENZIONE: Se si esegue la calibrazione in condizioni diverse da vuoto /pieno carico i valori di coppia rilevati potrebbero non garantire un funzionamento adeguato dell'impianto in tutte le condizioni

A questo punto terminato l'autotuning, l'impianto è pronto per essere utilizzato e configurato.

Eventuali messe a punto di fino possono essere effettuate agendo direttamente sui valori dei parametri del Drive accessibili nella lista "*User*" o dal BOP, come spiegato in dettaglio nel paragrafo 11.4.

ATTENZIONE: Solo in caso di sostituzione dell'inverter o del motore è necessario eseguire il riconoscimento del motore tramite P1910 prima di eseguire qualsiasi calibrazione. Contattare il Servizio Assistenza OMARLIFT per la procedura corretta.

11.3 LISTA PARAMETRI

Di seguito sono i riportati i parametri della lista "User" e i relativi valori standard validi per qualsiasi inverter.

Dopo aver effettuato la modifica dei parametri di interesse, è sempre necessario eseguire il salvataggio dei nuovi valori sulla memoria fisica della Control Unit, mediante RAM to ROM, altrimenti andranno persi al primo spegnimento (volontario o accidentale) dell'inverter. Per fare ciò, con WEBSERVER in modalità ONLINE, premere il pulsante RAM to ROM, altrimenti seguire la procedura descritta per il BOP (cap. 10).

Tabella 16 - Elenco parametri

ID	Descrizione	Valore Value	Unità Unit	MAX	min
SETTING U	PWARDS DIRECTION - CONFIGURAZIONE SALITA				
p21502	Velocità Pre-Start (2.2.2)	0.040	%	0.060	0.020
p21503	Tempo Pre-Start (2.2.3)	800.000	ms	1000	500
p21507	Alta velocità (2.2.6)	0.750	%	1.000	0.600
p21512	Bassa velocità (2.2.7)	0.095	%	0.12	0.060
p21513	Tempo decelerazione finale (2.2.14)	4.500.000	ms	6000	3000
p21514	Velocità di ispezione UP (2.2.9)	0.300	%	0.400	0.100
p21515	Velocità rilivellamento UP (2.2.8)	0.120	%	0.150	0.080
SETTING D	OWNWARDS DIRECTION - CONFIGURAZIONE DISCESA	1		•	•
p22011	Velocità Pre-Start 2 (2.3.2.2)	-0.002	%	0.020	- 0.020
p22017	Tempo Pre-Start 2 (2.3.3.2)	100.000	ms	300	100
p22023	Ritardo aggiuntivo Pre-Start 2 (2.3.3D.2)	500.000	ms	1000	100
p21537	Alta velocità (2.3.6)	-0.750	%	-1.000	-0.600.
p21542	Bassa velocità (2.3.7)	-0.090	%	-0.120	-0.060
p22081	Tempo decelerazione finale 2 (2.3.14.2)	800.000	ms	1000	500
p21544	Velocità ispezione DOWN (2.3.9)	-0.300	%	-0.400	-0.100
p21545	Velocità rilivellamento DOWN (2.3.8)	-0.020	%	-0.150	-0.080
p21630	Velocità alla chiusura EVD	0.080	%	0.120	0.060
RUPTURE	VALVE TEST- TEST VALVOLA PARACADUTE				,
p21523	Funzione test valvola paracadute VP (2.13.1)	0		NA	NA
p21524	Overspeed Factor	1.500		NA	NA
p21525	Tempo Ramp-up (ms) (2.13.3)	2.000.000	ms	NA	NA
p21526	Tempo Ramp-down (ms) (2.13.5)	1.500.000	ms	NA	NA
p21527	Max. Tempo test valvola Paracadute (ms)	15.000.000	ms	NA	NA
p21529	Parachute Max.Speed TimeOut (2.13.4)	4.000.000	ms	NA	NA
EMERGEN	CY MODE - MODALITÀ EMERGENZA				
p21546	Velocità Emergenza UP (2.6.1)	0.200	%	1.000	0.100
p21547	Velocità Emergenza DOWN (2.6.2)	-0.150	%	-1.000	-0.100

p21650	Adattamento Rampa Emergenza	1.000		NA	NA	
SHORT FLO	SHORT FLOOR - PIANO CORTO					
p21530	Attivazione Piano Corto	0		1	0	
p21548	Piano corto velocità UP (2.14.2)	0.160	%	0.800	0.200	
p21549	Piano corto velocità DOWN (2.14.3)	-0.110	%	-0.800	-0.200	
p21651	Fattore rampa piano corto	1.000		NA	NA	
COMPENS	ATIONS – COMPENSAZIONI					
p21570	Switch tipologia olio	OH		NA	NA	
p21571	P.X1	0.900		4.000	0.000	
p21572	P.X2	0.800		4.000	0.000	
p21573	P.X3	0.200		4.000	0.000	
p21574	P.X4	0.300		4.000	0.000	
p21575	P.X5	0.250		4.000	0.000	
p21576	P.X6	0.200		4.000	0.000	
p21577	P.X7	1.000		4.000	0.000	
p21578	P.X8	1.600		4.000	0.000	
p21579	P.X9	1.000		4.000	0.000	
p21580	P.X10	0.200		4.000	0.000	
p21581	P.X11	2.900		4.000	0.000	
p21582	P.X12	1.000		4.000	0.000	
AUTOTUN	ING - AUTO REGOLAZIONE					
p21600	Misurazione coppia a vuoto	0		1	0	
p21601	Misurazione coppia a pieno carico	0		1	0	
TORQUE V	ALUES - VALORI COPPIA					
p21590	Coppia in salita valore min	29.731	Nm	NA	NA	
p21591	Coppia in salita valore Max	51.892	Nm	NA	NA	
p21592	Valore di compensazione in salita	0.030	%	NA	NA	
p21595	Coppia in discesa valore min	-8.194	Nm	NA	NA	
p21596	Coppia in discesa valore Max	9.558	Nm	NA	NA	
p21597	Valore di compensazione in discesa	0.035	%	NA	NA	

NOTA: (*) tutte le velocità sono espresse in % giri rispetto alla velocità nominale del motore (in genere 3000 giri/min).

11.4 CONFIGURAZIONE PARAMETRI

Per entrambe le direzioni di marcia, può essere necessario adattare alcuni valori al proprio impianto:

- Impostare il valore desiderato per l'alta velocità P21507 (2.2.6) (P21537 (2.3.6) per la discesa).
- Impostare il valore desiderato per la bassa velocità P21512 (2.2.7) (P21542 (2.3.7) per la discesa).
- Impostare il valore desiderato per la velocità di ispezione P21514 (2.2.9) (P21544 (2.3.9) per la discesa).

11.4.1 Salita

Dopo aver effettuato la modifica dei parametri di interesse, è sempre necessario eseguire il salvataggio dei nuovi valori sulla memoria fisica della Control Unit, mediante salvataggio RAM to ROM, altrimenti andranno persi al primo spegnimento (volontario o accidentale) dell'inverter. Per fare ciò,

con STARTER in modalità ONLINE, selezionare l'azionamento e premere il pulsante RAM to ROM, altrimenti seguire la procedura descritta per il BOP (cap. 10).

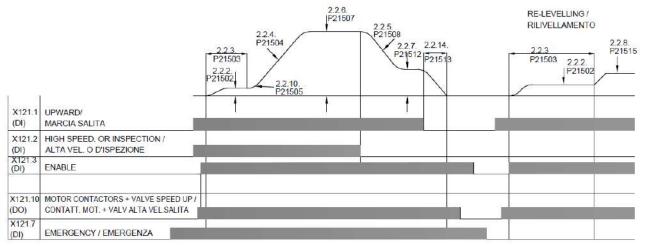


Figura 38 diagramma salita

DI=INPUT

DO=OUTPUT

Sequenza comandi Marcia salita:

- 1. Inserzione del comando SALITA, quando si sono chiusi i contattori deve arrivare il comando all'ingresso ENABLE: in questo modo si abilita la partenza del motore.

 Se si abilita il livello di velocità ALTA o ISPEZIONE, il motore si porta alla velocità "alta" o "ispezione" (P21507 (2.2.6) o P21514 (2.2.9)). Se non si abilita alcun livello di velocità (es. durante il rilivellamento al piano), il motore funzionerà alla velocità di rilivellamento (P21515 (2.2.8)).
- 2. Durante la corsa normale, giunti sul comando di rallentamento, deve essere tolto il segnale di ALTA VELOCITÀ: in questo modo, l'inverter si porta automaticamente in "bassa" velocità (P21512 (2.2.7))
- 3. Giunti al piano, si deve aprire il comando SALITA, l'inverter fa rallentare il motore fino all'arresto facendo cadere il comando contattori. Di conseguenza, viene tolto il comando di abilitazione ENABLE.
- Come regolare la PARTENZA SALITA

Limitarsi a regolare di preferenza i soli parametri visibili nella lista *User*. Alcuni parametri indicati possono essere disponibili solo dopo aver contattato l'assistenza OMARLIFT.

Per avere una buona partenza, facendo in modo che sia gestita completamente dall'inverter, è bene regolare la valvola idraulica al massimo di apertura, come per avere, senza inverter, una partenza immediata e rapida.

Per avere partenze "dolci" e senza strappi è necessario che la cabina si muova leggermente prima che cominci l'accelerazione. Questo si ottiene con i parametri P21502 (2.2.2), P21503 (2.2.3) regolati opportunamente. La successiva fase di accelerazione è già regolata di fabbrica. Eventualmente è possibile effettuare una regolazione differente con i parametri P21504 (2.2.4) e P21505 (2.2.10) visibili nella lista *User*

PARAMETRO	LA CABINA PARTE	LA CABINA TARDA	LA CABINA ACCELERA
	CON UNO STRAPPO	A PARTIRE	TROPPO VELOCEMENTE
P21502 (2.2.2)	↑	1	=
P21503 (2.2.3)	↑	↑	=
P21504 (2.2.4)	=	=	1
P21505 (2.2.10)	<u></u>	=	<u></u>

Legenda:

↑ aumentare il valore del parametro

↓ diminuire il valore del parametro

= il parametro è ininfluente

Come regolare la FERMATA SALITA

Limitarsi a regolare di preferenza i soli parametri visibili nella tabella parametri sopra riportata. Alcuni parametri indicati possono essere disponibili solo dopo aver contattato l'assistenza OMARLIFT.

La fase di rallentamento inizia quando si toglie il comando ALTA VELOCITÀ e rimane inserito il comando SALITA, una volta arrivato al piano si toglie il comando salita e il motore viene automaticamente portato a velocità zero.

Per ottenere la precisione di fermata desiderata, regolare i parametri P21512 (2.2.7) (Bassa Velocità) e P21513 (2.2.14) (Decelerazione Finale).

PARAMETRO	DURATA	,		PRESENZA DEL
	ECCESSIVA	PIANO SENZA	TRATTO A BASSA	TRATTO A BASSA
	DELLA BASSA	FARE BASSA	VELOCITÀ MA IL	VELOCITÀ MA LA
	VELOCITA' PER	VELOCITA'	PIANO VIENE	CABINA SI FERMA
	ARRIVO AL PIANO		SUPERATO	PRIMA DEL PIANO
P21508 (2.2.5)	1	\downarrow		=
P21512 (2.2.7)	=	=	\downarrow	↑
P21513 (2.2.14)	=	=	↓	↑

La precisione di fermata non dovrebbe essere influenzata troppo dal carico in cabina sia dalla temperatura dell'olio, in quanto sono state predisposte delle apposite compensazioni automatiche. Qualora la situazione dell'arrivo al piano non risultasse soddisfacente, al variare del carico o della temperatura procedere nel seguente modo:

- Regolare la fermata con olio freddo e cabina vuota, agendo sui parametri P21512 (2.2.7) e P21513 (2.2.14).
- Ripetere la prova alla medesima temperatura, ma a pieno carico ed eventualmente per regolare la corretta precisione di arrivo, agire questa volta sul parametro PX8 (NON MODIFICARE i parametri P21512 (2.2.7) e P21513 (2.2.14)!)
- Effettuare numerose corse in modo da riscaldare l'olio, a olio caldo controllare la precisione di fermata. Se la cabina si ferma prima del piano, modificare il parametro PX2 fino ad avere la precisione desiderata.
- Controllare infine con olio freddo e cabina vuota che la precisione di fermata sia rimasta quella ottenuta con le prove iniziali, altrimenti ripetere la procedura.

11.4.2 Discesa

Dopo aver effettuato la modifica dei parametri di interesse, è sempre necessario eseguire il salvataggio dei nuovi valori sulla memoria fisica della Control Unit, mediante salvataggio RAM to ROM, altrimenti andranno persi al primo spegnimento (volontario o accidentale) dell'inverter. Per fare ciò, con STARTER in modalità ONLINE, selezionare l'azionamento e premere il pulsante RAM to ROM, altrimenti seguire la procedura descritta per il BOP (cap. 10).

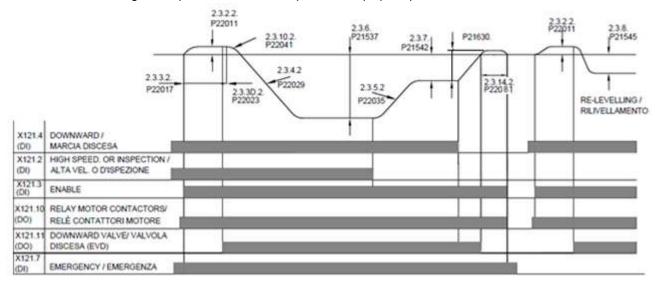


Figura 39 diagramma discesa

DI=INPUT

DO=OUTPUT

Come regolare la PARTENZA DISCESA

Limitarsi a regolare di preferenza i soli parametri visibili nella lista *User*. Alcuni parametri indicati possono essere disponibili solo dopo aver contattato l'assistenza OMARLIFT.

Per avere partenze "dolci" e senza strappi è necessario che la cabina si muova leggermente prima che cominci l'accelerazione. Questo si ottiene con i parametri:

PARAMETRO	LA CABINA SI MUOVE	LA CABINA PARTE A	LA CABINA ACCELERA
	PRIMA IN SALITA POI IN	STRAPPO IN	TROPPO
	DISCESA	DISCESA	VELOCEMENTE
P22011 (2.3.2.2)	\downarrow	↑	=
P22017 (2.3.3.2)	\downarrow	↑	=
P22029 (2.3.4.2)	=	=	↑
P22041 (2.3.10.2)	=	=	\uparrow

Legenda: ↑ aumentare il valore del parametro

= il parametro è ininfluente

• Come regolare la FERMATA DISCESA

🔼Limitarsi a regolare di preferenza i soli parametri visibili nella lista User.

Per avere una fermata precisa e "dolce", con variazioni minime da vuoto a carico, è necessario regolare alcuni parametri:

PARAMETRO	ARRIVO AL PIANO IN DECELERAZ (NON A VELOCITÀ COSTANTE)	ECCESSIVA DURATA TRATTO BASSA VELOCITA'	ARRESTO DOPO IL PIANO	ARRESTO PRIMA DEL PIANO	ARRESTO BRUSCO	ARRESTO CON SOBBALZO IN SALITA
P22035 (2.3.5.2)	<u> </u>	<u> </u>	=	=	=	=

P21542 (2.3.7)	=	=	\	↑	=	=
P21630	=	=	↑	→	\	↓

Il parametro P21630 definisce l'incremento della velocità di rotazione del motore rispetto alla bassa velocità in discesa (negativa) con l'obiettivo di far ruotare in senso contrario del motore durante la fase di chiusura della valvola. Modifiche di questo parametro vanno effettuate per piccoli passi (0,05) alla volta. Per chiarimenti sulla compensazione di P21630 al variare della temperatura contattare il servizio di assistenza OMARLIFT.

MODIFICARE SEMPRE UN SOLO PARAMETRO ALLA VOLTA.

11.4.3 Rilivellamento

Come regolare il RILIVELLAMENTO

Provare il rilivellamento a vuoto, spostando l'ascensore verso il basso rispetto al piano tramite il pulsante di discesa di emergenza e verso l'alto con la pompa a mano.

Se il ripristino della posizione di piano non è soddisfacente, regolare il parametro P21515 (2.2.8) fino ad ottenere la fermata desiderata.

E' possibile modificare il rilivellamento a pieno carico agendo sul parametro PX9

E' possibile modificare il rilivellamento alla massima temperatura olio, agendo sul parametro PX3

11.4.4 Emergenza

Parametri per funzionamento in EMERGENZA (Ingresso X121.7)

L'inverter SIEMENS consente la gestione dedicata di una condizione di alimentazione in emergenza tramite l'installazione di un gruppo UPS trifase a 400V (non fornito), la cui installazione e dimensionamento sono a carico del Cliente.

Il funzionamento mediante gruppo UPS garantisce un numero limitato di corse sia in salita che in discesa, dipendente dal dimensionamento dello stesso.

La funzione EMERGENZA è pilotata tramite l'ingresso X121.7

E' possibile regolare la velocità di movimento nella direzione salita o discesa tramite i parametri:

P21546 (2.6.1) Velocità di emergenza in Salita P21547 (2.6.2) Velocità di emergenza Discesa

11.4.5 Considerazioni generali

Regole generali per una corretta regolazione

- Se in alta velocità la velocità della cabina non è costante, controllare i dati del motore. In particolare i dati del motore devono corrispondere a quelli "reali". Verificare inoltre che la parte meccanica (cabina/pistone), abbia attriti uniformi lungo la corsa.
- Per avere una fermata con precisione costante è necessario che la cabina percorra un piccolo spazio (5÷10cm) in bassa velocità costante (regolare i parametri come indicato in tabella).
- Regolare la bassa velocità al valore desiderato, tenendo presente che un valore molto basso aumenta il tempo di arrivo al piano.
- Non regolare la frequenza di switching a valori troppo alti, altrimenti si surriscaldano inutilmente motore ed inverter.

11.5 TEST VALVOLA PARACADUTE

Il test della valvola paracadute di sicurezza, è un test che prevede la verifica della funzionalità del dispositivo di sicurezza normalmente installato sul cilindro o nelle sue vicinanze, il quale deve essere in grado di arrestare l'ascensore nel caso la sua velocità superi del 30% la velocità nominale dell'impianto.

L'inverter SIEMENS fornito da OMARLIFT prevede una funzione apposita da utilizzare esclusivamente per consentire il raggiungimento della velocità di intervento della valvola paracadute e testarne il funzionamento. Nel caso si voglia effettuare un test di funzionamento, procedere come segue:

- Mettere in sicurezza l'impianto per esecuzione della prova (liberare la via di corsa, verificare la funzionalità di tutti i dispositivi di controllo e comando dell'ascensore, ecc)
- Caricare l'ascensore al carico nominale e portarlo al piano più alto

- Attivare la funzione di prova, settando il parametro P 21523 Funzione test valvola paracadute (P2.13.1) al valore 1
- Eseguire una discesa dal piano più alto al piano più basso
- La velocità della cabina aumenterà fino a superare la velocità nominale
- Al superamento del 30% della velocità nominale, la valvola di sicurezza interverrà determinando l'arresto della cabina

Se dopo alcuni metri percorsi a velocità superiore a quella nominale, la valvola non dovesse intervenire, arrestare manualmente l'ascensore con il comando di STOP, non attendendo l'intervento di altri dispositivi di sicurezza.

La Funzione test valvola paracadute si disattiva automaticamente dopo ogni test (0), per eseguire un nuovo test dopo regolazione della valvola, è necessario attivarla nuovamente.

Per l'eventuale regolazione della valvola paracadute, fare riferimento al relativo manuale del Costruttore.

12 CODICI DI ANOMALIA E DI AVVISO

Gli inverter SIEMENS emettono degli avvisi di ANOMALIA di tipo A (AVVISO) o F (FAULT).

Gli errori sono identificati dalla lettera del tipo (A/F), seguita da un codice a più cifre che permette di risalire alle cause che lo hanno generato e alle relative possibili soluzioni.

Gli errori vengono visualizzati sul pannello operatore BOP.

Per **resettare gli errori**, selezionare l'errore e seguire la procedura indicata di seguito agendo tramite il pannello BOP.

In generale, comunque, a fronte di una non conformità rilevata, l'inverter si comporta nel modo seguente:

• gli errori di TIPO A (Alarm) sono degli errori di importanza secondaria che in linea di massima non hanno influenza sul comportamento degli INVERTER/ASCENSORE.

L'errore A resta attivo finché permane la causa che lo ha determinato, poi viene resettato automaticamente.

• Gli errori di TIPO F (Fault) sono difetti gravi che determinano l'arresto immediato dell'inverter e dell'ascensore che viene posto in sicurezza tramite contemporanea chiusura della valvola dell'elettrovalvola di discesa (EVD).

L'errore F rimane attivo anche dopo la scomparsa della causa che lo determina e va resettato manualmente.

Nota: Se esistono più anomalie e avvisi attivi, il BOP visualizza dapprima tutte le anomalie una dopo l'altra. Dopo aver visualizzato tutte le anomalie, visualizza tutti gli avvisi in successione e la visualizzazione continua a ripetersi.

12.1 RESET ANOMALIE

Riconoscimento / cancellazione delle anomalie (FAULT)

- Per scorrere l'elenco di anomalie, premere ▲ o ▼ sul tastierino BOP.
- Per cancellare / riconoscere l'anomalia, premere FN.

Dopo aver riconosciuto o ignorato l'anomalia, la schermata torna alla visualizzazione precedente. L'anomalia rimane attiva finché non si cancella / conferma.

Nota: La schermata delle anomalie appare di nuovo in presenza di problemi se non viene premuto alcun pulsante

Alcuni errori possono essere gestiti e resettati in automatico dal quadro di comando, utilizzando la porta di input X131.2 (cfr. schema connessione, paragrafo 7.4).

12.2 ELENCO CODICI ANOMALIE

AVVERTENZE: Per comprendere al meglio le cause, dopo aver acquisito il codice di errore può essere necessario leggere l'indice dell'errore nel parametro r0949

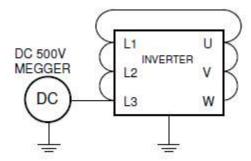
Anomalia	Causa	Rimedio	
F01042 Errore parametro nel download del progetto	Durante un download (caricamento o aggiornamento) di progetto con il software di messa in servizio è stato rilevato un errore (ad es. valore di parametro errato)	 Inserire il valore corretto nel parametro specificato Determinare il parametro che fissa i limiti del parametro specificato (qualora in dipendenza da un altro parametro) 	
F01043 Errore grave nel download del progetto	Durante un download di progetto (caricamento o aggiornamento) con il software di messa in servizio è stato rilevato un errore grave	Esaminare gli altri messaggi presenti ed eliminarne la causa Avviare dai file salvati in precedenza (disinserzione/inserzione) Contattare Assistenza OMARLIFT	
F01072 Scheda di memoria ripristinata da copia di backup	Durante un accesso in scrittura alla scheda di memoria la Control Unit è stata disattivata. La partizione visibile è quindi diventata difettosa	 Verificare che il firmware e il backup della parametrizzazione siano aggiornati In caso di permanenza contattare l'Assistenza OMARLIFT 	

	Dopo l'inserzione i dati della partizione non visibile (copia di backup) sono stati scritti sulla partizione visibile	
Anomalia	Causa	Rimedio
A01073 POWER ON necessario per copia di backup su scheda di memoria	La parametrizzazione sulla partizione visibile della scheda di memoria è cambiata	Eseguire un POWER ON della Control Unit (disinserzione/inserzione)
A02050 Trace: Avvio impossibile	La funzione Trace è già avviata	Arrestare Trace ed eventualmente riavviarla
A02051 Registrazione impossibile a causa della protezione know-how (KHP)	La registrazione TRACE non è possibile perché almeno un segnale o un segnale trigger impiegato è soggetto a protezione del know-how	Eventualmente non registrare il segnale Contattare Assistenza OMARLIFT
A02060 Trace: Manca segnale da registrare	 Non è stato specificato alcun segnale da registrare I segnali specificati non sono validi 	Indicare il segnale da registrare Verificare che il segnale possa essere registrato da Trace
F03505 CU: Rottura conduttore dell'ingresso analogico	È intervenuta la sorveglianza della rottura conduttore per l'ingresso analogico relativo alla termocoppia (X131.7/X131.8) In caso di connessione errata o mancante delle termocoppia, l'indicazione della temperatura sul BOP sarà P21695=33,035	Verificare che non vi siano interruzioni nel cablaggio con la termocoppia Verificare il collegamento e la funzionalità dell'amplificatore SENECA nella scatola elettrica Verificare l'intensità della corrente impressa eventualmente il segnale ricevuto è troppo piccolo Una corrente inferiore a 4 mA non viene visualizzata in r752[0], bensì viene emesso r752[0] = 4 mA
A03506 Alimentazione della tensione 24 V assente	Manca la tensione di alimentazione a 24 V per le uscite digitali (X124)	Controllare i morsetti per l'alimentazione della tensione (X124, L1+, M)
A05000 A05001 A05002 A05003 A05004 A05006 A06260 Sovratemperatura	Sovratemperatura in differenti aree dell'inverter	 Temperatura ambiente troppo elevata Malfunzionamento del ventilatore Tacitazione automatica quando la temperatura scende al di sotto del limite
F06210 Alimentatore: Corrente totale troppo elevata	La somma livellata delle correnti di fase (i1 + i2 + i3) è superiore al 4 % della corrente massima della parte di potenza (r0209) • È presente una dispersione verso terra nel circuito intermedio che provoca una corrente totale elevata che può provocare il danneggiamento o la distruzione di parte di potenza, bobina di commutazione o filtro di rete!	Controllare se nel circuito intermedio vi è una dispersione verso terra a bassa o ad alta resistenza ed eventualmente eliminare tale dispersione verso terra Contattare assistenza Omarlift Eventualmente sostituire la parte di potenza
F06300 Alimentatore: Tensione di rete troppo elevata all'inserzione	La tensione di rete effettiva Veff era così elevata al momento dell'inserzione che il funzionamento regolato non è possibile senza che venga superata la tensione massima consentita nel circuito intermedio	Controllare la tensione di rete Controllare la tensione di collegamento e confrontarla con la tensione di rete effettiva (p0210) Contattare Assistenza OMARLIFT

Anomalia	Causa	Rimedio		
F06310 Tensione di collegamento (p0210) parametrizzata in modo errato	 A precarica conclusa, negli apparecchi AC/AC la tensione del circuito intermedio misurata si trova fuori dal campo di tolleranza Per il campo di tolleranza vale: 1.16*p0210 < r0070 < 1.6*p0210 L'errore può essere tacitato solo con l'azionamento disattivato. Vedi anche: p0210 (Tensione di collegamento apparecchi) 	Controllare la tensione di rete e le sue oscillazioni nell'arco della giornata Controllare la tensione a vuoto o sotto carico Controllare ed eventualmente modificare la tensione di collegamento parametrizzata (p0210)		
A06350 A06351 Frequenza di rete applicata f_rete è più elevata della soglia di avviso parametrizzata (f_rete > p0211 * p0284) o inferiore (f_rete < p0211 * p0285)	L'avviso può verificarsi: Durante la fase di inserzione dell'alimentatore la sincronizzazione dell'alimentatore con la rete viene interrotta e riavviata Durante il funzionamento dell'alimentatore L'alimentatore resta nello stato di funzionamento e viene emesso l'avviso di rete applicata. Questo indica la presenza di un'anomalia grave.	 Controllare ed eventualmente modificare la frequenza di rete parametrizzata (p0211) Controllare la soglia di avviso (p0284 o p0285) Controllare la connessione di rete Controllare la qualità della rete. 		
F07815 Azionamento: parte di potenza modificata	Il numero di codice della parte di potenza (PM) attuale non corrisponde a quello memorizzato nella CU	Se sono stati cambiati la parte di potenza o la CU+CFC, ripristinare l'abbinamento originale dei componenti Nel caso di sostituzione del motore, contattare OMARLIFT		
F07860 Anomalia esterna	Un valore di misura o stato del segnale è al di fuori dell'intervallo consentito, in particolare può riferirsi al controllo di cavitazione	Modificare le impostazioni del controllo tramite i parametri p22450, p22451 (contattare assistenza Omarlift) Disabilitare permanentemente il controllo di cavitazione p22453=0		
F13100 Protezione know-how (KHP): errore protezione contro la copia	La protezione know-how e la protezione contro la copia per la scheda di memoria sono attive • Durante la verifica della scheda di memoria si è verificato un errore (scheda di memoria errata, o inserita in un'altra Control Unit)	Per il valore di anomalia = 0 Inserire una scheda di memoria adatta ed eseguire un POWER ON Rivolgersi all'OEM competente (OMARLIFT)		
F30001 Parte di potenza: sovracorrente	La parte di potenza ha rilevato una sovracorrente Regolazione parametrizzata in modo errato Il motore ha un cortocircuito o una dispersione a terra Alimentatore: Correnti di scarica e ricarica elevate in caso di caduta della tensione di rete I cavi di potenza non sono collegati correttamente I cavi di potenza superano la lunghezza massima consentita Parte di potenza guasta Fase di rete interrotta	 Controllare i dati del motore, eventualmente eseguire la messa in servizio Controllare il tipo di collegamento del circuito motore (stella/triangolo) Aumentare la rampa di accelerazione Controllare l'assegnazione delle correnti nominali di motore e Motor Module Controllare le connessioni dei cavi di potenza Verificare l'assenza di cortocircuiti o errori di messa a terra nei cavi di potenza Controllare la lunghezza dei cavi di potenza 		

		Controllare le fasi di rete Sostituire la parte di potenza
Anomalia	Causa	Rimedio
F30002 Parte di potenza: sovratensione circuito intermedio	La parte di potenza ha rilevato una sovratensione nel circuito intermedio Il motore fornisce troppa energia di recupero durante la discesa Tensione di collegamento apparecchi troppo elevata	 Aumentare tempo di decelerazione Utilizzare resistenza di frenatura. Potrebbe essere scollegata o collegata in modo errato Aumentare limite di corrente dell'alimentatore o utilizzare un modulo più grande Verificare tensione di collegamento apparecchi Controllare le fasi di rete
F30003 Parte di potenza: sotto tensione circuito intermedio	La parte di potenza ha rilevato una sotto tensione nel circuito intermedio Interruzione di rete Tensione di rete al di sotto del valore consentito Guasto o anomalia dell'alimentatore di rete Fase di rete interrotta	 Controllare la tensione di rete Verificare l'alimentatore di rete ed eventualmente fare attenzione ai messaggi dell'alimentatore di rete Controllare le fasi di rete Controllare l'impostazione della tensione di collegamento (p0210)
F30015 Parte di potenza: mancanza fase cavo di alimentazione del motore	È stata rilevata una mancanza di fase nel cavo di alimentazione del motore Lo stesso messaggio può comparire anche nel caso in cui il motore sia collegato correttamente, ma la regolazione di velocità è instabile e quindi genera una coppia oscillante	 Controllare i cavi di alimentazione del motore Controllare il manometro durante la corsa e verificare oscillazioni di pressione Controllare le impostazioni del regolatore del numero di giri
A30016 Parte di potenza: Alimentazione carico disattivata	La tensione del circuito intermedio è troppo bassa	Verificare quanto segue: Attivare l'alimentazione del motore Controllare eventualmente il collegamento alla rete

13 CONTROLLI E MANUTENZIONE


Effettuare ciclicamente i controlli di seguito riportati per garantire una lunga durata ed un funzionamento ottimale dell'inverter.

Intervenire sull'inverter solo dopo aver tolto l'alimentazione e dopo essersi accertati che la tastiera sia spenta.

- 1- Togliere la polvere che si accumula sulle alette di raffreddamento e sulla scheda di comando, possibilmente con un getto d'aria compressa o un'aspirapolvere.
- 2- Controllare che non vi siano viti allentate nella morsettiera di potenza o di comando.
- 3- Controllare che il funzionamento dell'inverter sia quello <<normale>> e che non vi siano tracce di surriscaldamenti anomali.

13.1 TEST MEGGER

Quando si eseguono le prove di isolamento con un Megger sui cavi di ingresso/uscita o sul motore, togliere i collegamenti a tutti i morsetti dell'inverter ed eseguire il test solo sul circuito di potenza, seguendo lo schema indicato nel disegno a fianco. Non eseguire il test sui circuiti di comando.

OMARLIFT s.r.l. Via F.lli Kennedy, 22/D 24060 Bagnatica (BG) – ITALY Phone +39 035 689611 Fax +39 035 689671

Email: <u>info@omarlift.eu</u> Web: http://www.omarlift.eu